日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1.  

          已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設(shè),,是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),證明直線軸相交于定點(diǎn)

          (Ⅲ)在(Ⅱ)的條件下,過點(diǎn)的直線與橢圓交于,兩點(diǎn),求的取值范圍.

           

           

          【答案】

           解:(Ⅰ)由題意知,

          所以

          又因?yàn)?sub>

          所以,

          故橢圓的方程為.         …4分

          (Ⅱ)由題意知直線的斜率存在,設(shè)直線的方程為

            得.       ①    …6分

          設(shè)點(diǎn),,則

          直線的方程為

          ,得

          ,代入,

          整理,得.                             ②

          由①得 ,代入②

          整理,得

          所以直線軸相交于定點(diǎn).         …9分

          (Ⅲ)當(dāng)過點(diǎn)直線的斜率存在時(shí),設(shè)直線的方程為,且

          在橢圓上.

            得.  

          易知

          所以,

          因?yàn)?sub>,所以

          所以

          當(dāng)過點(diǎn)直線的斜率不存在時(shí),其方程為

          解得:,

          此時(shí)

          所以的取值范圍是.           …12分

           

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個(gè)交點(diǎn),若e|PF2|=|PF1|,則e的值為(  )
          A、
          1
          2
          B、
          2
          2
          C、
          3
          3
          D、以上均不對(duì)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的離心率為
          1
          2
          ,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為( 。
          A、
          x2
          36
          +
          y2
          27
          =1
          B、
          x2
          36
          -
          y2
          27
          =1
          C、
          x2
          27
          +
          y2
          36
          =1
          D、
          x2
          27
          -
          y2
          36
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在由圓O:x2+y2=1和橢圓C:
          x2
          a2
          +y2
          =1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
          6
          3
          ,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
          (1)求橢圓C的方程;
          (2)是否存在直線l,使得
          OA
          OB
          =
          1
          2
          OM
          2
          ,若存在,求此時(shí)直線l的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知橢圓的離心率為
          2
          2
          ,準(zhǔn)線方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
          (2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開家前能得到報(bào)紙(稱為事件A)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,A,B是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
          (1)若e=
          1
          2
          ,m=4,求橢圓C的方程;
          (2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點(diǎn),求e.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案