日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知為自然對(duì)數(shù)的底數(shù), ).

          (1)設(shè)的導(dǎo)函數(shù),證明:當(dāng)時(shí), 的最小值小于0;

          (2)恒成立,求符合條件的最小整數(shù)

          【答案】(1)見解析;(2).

          【解析】試題分析:(1先對(duì)函數(shù)進(jìn)行求導(dǎo),然后再對(duì)導(dǎo)函數(shù)進(jìn)行求導(dǎo),判斷導(dǎo)函數(shù)的單調(diào)性與單調(diào)區(qū)間,利用單調(diào)性確定到導(dǎo)函數(shù)的最小值;(2先根據(jù)條件,確定問(wèn)題即求函數(shù)的最小值大于0,然后對(duì)函數(shù)進(jìn)行求導(dǎo),利用函數(shù)的單調(diào)性及零點(diǎn)存在定理確定函數(shù)存在零點(diǎn),并表示零點(diǎn)然后通過(guò)不等式恒成立,確定關(guān)于的關(guān)系式,再對(duì)該關(guān)系式進(jìn)行求導(dǎo),利用導(dǎo)數(shù)判斷單調(diào)性求得的取值范圍,最后得到其取到的最小整數(shù).

          試題解析:(1),

          因?yàn)?/span>,,.

          所以當(dāng)時(shí), 單調(diào)遞減;

          當(dāng)時(shí), 單調(diào)遞增.

          = = ==

          ,

          當(dāng)時(shí), 單調(diào)遞增;

          當(dāng)時(shí), 單調(diào)遞減.

          所以,所以成立.

          (2) 恒成立,等價(jià)于恒成立.

          ,

          因?yàn)?/span>,所以,所以單調(diào)遞增.

          ,

          所以存在,使得.

          時(shí), 單調(diào)遞減;

          時(shí), 單調(diào)遞增.

          所以恒成立.

          由①②得==恒成立.

          又由②得,

          所以

          ,

          所以,

          所以單調(diào)遞增, =,

          =,

          所以,所以符合條件的最小整數(shù).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正三棱柱ABCA1B1C1的各棱長(zhǎng)都等于2,DAC1上,FBB1的中點(diǎn),且FDAC1,有下述結(jié)論:

          AC1BC;

          =1;

          ③平面FAC1⊥平面ACC1A1;

          ④三棱錐DACF的體積為.

          其中正確結(jié)論的個(gè)數(shù)為(  )

          A. 1 B. 2

          C. 3 D. 4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)axln(x1),其中a為常數(shù).

          (1)試討論f(x)的單調(diào)區(qū)間;

          (2)當(dāng)a時(shí),存在x使得不等式成立,求b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】本小題12分如圖,在海岸線一側(cè)有一休閑游樂(lè)場(chǎng),游樂(lè)場(chǎng)的前一部分邊界為曲線段,該曲線段是函數(shù),的圖像,圖像的最高點(diǎn)為邊界的中間部分為長(zhǎng)千米的直線段,且游樂(lè)場(chǎng)的后一部分邊界是以為圓心的一段圓弧

          1求曲線段的函數(shù)表達(dá)式;

          2曲線段上的入口距海岸線最近距離為千米,現(xiàn)準(zhǔn)備從入口修一條筆直的景觀路到,求景觀路長(zhǎng);

          3如圖,在扇形區(qū)域內(nèi)建一個(gè)平行四邊形休閑區(qū),平行四邊形的一邊在海岸線上,一邊在半徑上,另外一個(gè)頂點(diǎn)在圓弧上,且,求平行四邊形休閑區(qū)面積的最大值及此時(shí)的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)若,求函數(shù)的極值;

          (2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

          (3)若在區(qū)間不存在,使得成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) ,且 .

          (Ⅰ)設(shè) ,求的單調(diào)區(qū)間及極值;

          (Ⅱ)證明:函數(shù)的圖象在函數(shù)的圖象的上方.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,

          (1)求 的值;

          (2)試猜想的表達(dá)式(用一個(gè)組合數(shù)表示),并證明你的猜想.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C1以直線所過(guò)的定點(diǎn)為一個(gè)焦點(diǎn),且短軸長(zhǎng)為4.

          Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;

          Ⅱ)已知橢圓C2的中心在原點(diǎn),焦點(diǎn)在y軸上,且長(zhǎng)軸和短軸的長(zhǎng)分別是橢圓C1的長(zhǎng)軸和短軸的長(zhǎng)的(1),過(guò)點(diǎn)C(1,0)的直線l與橢圓C2交于A,B兩個(gè)不同的點(diǎn),若,求△OAB的面積取得最大值時(shí)直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義域?yàn)?/span>的偶函數(shù)滿足對(duì),有,且當(dāng)時(shí), ,若函數(shù)上至多有三個(gè)零點(diǎn),則的取值范圍是

          __________.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案