日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線C:y=-x2+x+2關(guān)于點(diǎn)M(-1,-2)對(duì)稱的曲線為Cn,且曲線C與Cn有兩個(gè)不同的交點(diǎn)A、B,求直線AB的方程.
          分析:設(shè)出曲線Cn上的任一點(diǎn)(x,y),設(shè)出該點(diǎn)關(guān)于點(diǎn)M(-1,-2)的對(duì)稱點(diǎn)為(x0,y0),由中點(diǎn)坐標(biāo)公式找出兩點(diǎn)坐標(biāo)間的關(guān)系,再由(x0,y0)在曲線C:y=-x2+x+2上,代入坐標(biāo)后整理即可得到曲線為Cn的方程,然后設(shè)出兩曲線交點(diǎn)A,B的坐標(biāo),代入兩曲線方程后作差求出直線AB的斜率,利用點(diǎn)斜式求得直線AB的方程.
          解答:解:設(shè)(x,y)為曲線Cn上的任一點(diǎn),(x,y)關(guān)于點(diǎn)M(-1,-2)的對(duì)稱點(diǎn)為(x0,y0),
          則x0=-2-x,y0=-4-y.
          依題意,點(diǎn)(x0,y0)在曲線C上,∴-4-y=-(-2-x)2-2-x+2.
          化簡、整理,得曲線Cn的方程:y=x2+5x;
          y=-x2+x+2
          y=x2+5x
          消去y,得:x2+2x-1=0.
          設(shè)A(x1,y1),B(x2,y2),
          則x1+x2=-2,x1x2=-1.
          y1=-
          x
          2
          1
          +x1+2,y2=-
          x
          2
          2
          +x2+2

          兩式相減,得:
          y1-y2=[1-(x1+x2)](x1-x2)
          x1x2
          ∴k=
          y1-y2
          x1-x2
          =1-(x1+x2)=3

          ∴直線AB方程為:y+2=3(x+1),即3x-y+1=0.
          點(diǎn)評(píng):本題考查了曲線與方程,考查了代入法求曲線的方程,訓(xùn)練了利用“點(diǎn)差法”求直線的斜率,屬中高檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知曲線C:y=
          1
          x
          (x>0)
          及兩點(diǎn)A1(x1,0)和A2(x2,0),其中x2>x1>0.過A1,A2分別作x軸的垂線,交曲線C于B1,B2兩點(diǎn),直線B1B2與x軸交于點(diǎn)A3(x3,0),那么( 。
          A、x1, 
          x3
          2
          , x2
          成等差數(shù)列
          B、x1, 
          x3
          2
          , x2
          成等比數(shù)列
          C、x1,x3,x2成等差數(shù)列
          D、x1,x3,x2成等比數(shù)列

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          17、已知曲線C:y=x3-x+2和點(diǎn)A(1,2),求過點(diǎn)A的切線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知曲線C:y=
          1
          3
          x3-x2-4x+1
          ,直線l:x+y+2k-1=0,當(dāng)x∈[-3,3]時(shí),直線l 恒在曲線C的上方,則實(shí)數(shù)k的取值范圍是(  )
          A、k>-
          5
          6
          B、k<-
          5
          6
          C、K<
          3
          4
          D、K>
          3
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•河西區(qū)二模)已知曲線C:y=x2(x>0),過C上的點(diǎn)A1(1,1)作曲線C的切線l1交x軸于點(diǎn)B1,再過點(diǎn)B1作y軸的平行線交曲線C于點(diǎn)A2,再過點(diǎn)A2作曲線C的切線l2交x軸于點(diǎn)B2,再過點(diǎn)B2作y軸的平行線交曲線C于點(diǎn)A3,…,依次作下去,記點(diǎn)An的橫坐標(biāo)為an(n∈N*
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求證:anSn≤1;
          (3)求證:
          n
          i=1
          1
          aiSi
          4n-1
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知曲線C:y=
          1
          x
          ,Cny=
          1
          x+2-n
          (n∈N*).從C上的點(diǎn)Qn(xn,yn)作x軸的垂線,交Cn于點(diǎn)Pn,再過點(diǎn)Pn作y軸的垂線,交C于點(diǎn)Qn+1(xn+1,yn+1)設(shè),x1=1,an=xn+1-xn,bn=yn -yn+1
          (1)求點(diǎn)Q1、Q2的坐標(biāo);
          (2)求數(shù)列{an} 的通項(xiàng)公式;
          (3)記數(shù)列{an•yn+1} 的前n項(xiàng)和為Sn,求證sn
          1
          3

          查看答案和解析>>

          同步練習(xí)冊(cè)答案