日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在如圖所示的幾何體中,四邊形為矩形,直線(xiàn)平面,,,點(diǎn)在棱上.

          (1)求證:;

          (2)若的中點(diǎn),求異面直線(xiàn)所成角的余弦值;

          (3)若,求二面角的余弦值.

          【答案】(1)見(jiàn)解析(2) (3)

          【解析】試題分析:(1)由平面,得;再由, 得, 平面.(2)先建立空間直角坐標(biāo)系,由,,利用夾角公式可求異面直線(xiàn)所成角的余弦值.(3)由.再求出平面和平面的法向量,即可求得二面角的余弦值為.

          試題解析:

          (1)證明:因?yàn)?/span>平面,所以,又,所以平面,又平面,故.

          (2)因?yàn)?/span>,所以,又由(1)得,所以以為坐標(biāo)原點(diǎn),,所在直線(xiàn)分別為,,軸,建立如圖所示空間直角坐標(biāo)系,

          ,,.

          所以,,所以

          所以異面直線(xiàn)所成角的余弦值為.

          (3)因?yàn)?/span>平面,所以平面的一個(gè)法向量,由的三等分點(diǎn)且此時(shí).在平面中,,,所以平面的一個(gè)法向量.

          所以,又因?yàn)槎娼?/span>的大小為銳角,所以該二面角的余弦值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知定圓,定直線(xiàn),過(guò)的一條動(dòng)直線(xiàn)與直線(xiàn)相交于,與圓相交于,兩點(diǎn),

          1當(dāng)垂直時(shí),求出點(diǎn)的坐標(biāo),并證明:過(guò)圓心;

          2當(dāng)時(shí),求直線(xiàn)的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解防震知識(shí)在中學(xué)生中的普及情況,某地震部門(mén)命制了一份滿(mǎn)分為10分的問(wèn)卷到紅星中學(xué)做問(wèn)卷調(diào)查.該校甲、乙兩個(gè)班各被隨機(jī)抽取名學(xué)生接受問(wèn)卷調(diào)查,甲班名學(xué)生得分為5,8,9,9,9乙班5名學(xué)生得分為6,7,8,9,10.

          (Ⅰ)請(qǐng)你估計(jì)甲乙兩個(gè)班中,哪個(gè)班的問(wèn)卷得分更穩(wěn)定一些;

          (Ⅱ)如果把乙班5名學(xué)生的得分看成一個(gè)總體,并用簡(jiǎn)單隨機(jī)抽樣方法從中抽取樣本容量為2的樣本,求樣本平均數(shù)與總體平均數(shù)之差的絕對(duì)值不小于1的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直三棱柱中,點(diǎn)分別在棱上(均異于端點(diǎn)),且.

          (1)求證:平面平面;

          (2)求證: 平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,某小區(qū)擬在空地上建一個(gè)占地面積為2400平方米的矩形休閑廣場(chǎng),按照設(shè)計(jì)要求,休閑廣場(chǎng)中間有兩個(gè)完全相同的矩形綠化區(qū)域,周邊及綠化區(qū)域之間是道路(圖中陰影部分),道路的寬度均為2米.怎樣設(shè)計(jì)矩形休閑廣場(chǎng)的長(zhǎng)和寬,才能使綠化區(qū)域的總面積最大?并求出其最大面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),.

          1函數(shù)區(qū)間是減函數(shù),求實(shí)數(shù)取值范圍;

          2設(shè)函數(shù),當(dāng)時(shí),成立,求取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,已知圓的圓心在直線(xiàn)上,且該圓存在兩點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng),又圓與直線(xiàn)相切,過(guò)點(diǎn)的動(dòng)直線(xiàn)與圓相交于兩點(diǎn),的中點(diǎn),直線(xiàn)相交于點(diǎn)

          (1)求圓的方程;

          (2)當(dāng)時(shí),求直線(xiàn)的方程;

          (3)是否為定值?如果是,求出其定值;如果不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知橢圓的離心率,過(guò)點(diǎn),的直線(xiàn)與原點(diǎn)的距離為,是橢圓上任一點(diǎn),從原點(diǎn)向圓作兩條切線(xiàn),分別交橢圓于點(diǎn),.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)若記直線(xiàn)的斜率分別為,,試求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

          (Ⅱ)用反證法證明:在上,不存在不同的兩點(diǎn),,使得的圖象在這兩點(diǎn)處的切線(xiàn)相互平行.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案