日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情
          在長方體ABCD-A1B1C1D1中,AB=
          3
          ,B1B=BC=1,則面B D1C與面A D1D所成二面角的大小為( 。
          分析:根據正方體的性質,得面BD1C與面AD1D所成二面角就是二面角C-A1D1-D.由CD1⊥A1D1且DD1⊥A1D1,得∠CD1D就是二面角C-A1D1-D的平面角,根據題中數據在Rt△CD1D中算出∠CD1D=60°,即得面BD1C與面AD1D所成二面角的大。
          解答:解:∵平面BD1C∩面AD1D=A1D1
          ∴直線A1D1就是面BD1C與面AD1D所成二面角的棱
          ∵長方體ABCD-A1B1C1D1中,A1D1⊥平面CC1D1D,CD1?平面CC1D1D
          ∴CD1⊥A1D1
          結合DD1⊥A1D1,可得∠CD1D就是二面角C-A1D1-D的平面角
          ∵Rt△CD1D中,D1D=1,CD=AB=
          3

          ∴tan∠CD1D=
          CD
          D1D
          =
          3
          ,可得∠CD1D=60°
          即面BD1C與面AD1D所成二面角的大小為60°
          故選:C
          點評:本題在長方體中求二面角的平面角大。乜疾榱碎L方體的性質,二面角的平面角的定義及其求法等知識,屬于基礎題.
          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          在長方體ABCD-A'B'C'D'中,AB=
          3
          ,AD=
          3
          ,AA′=1,則AA′和BC′所成的角是( 。

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          如圖,在長方體ABCD-A′B′C′D′中,用截面截下一個棱錐C-A′DD′,求棱錐C-A′DD′的體積與剩余部分的體積之比.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2013•上海) 如圖,在長方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          (2009•青浦區(qū)二模)(理)在長方體ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
          求:
          (1)頂點D'到平面B'AC的距離;
          (2)二面角B-AC-B'的大。ńY果用反三角函數值表示)

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          精英家教網已知在長方體ABCD-A′B′C′D′中,點E為棱CC′上任意一點,AB=BC=2,CC′=1.
          (Ⅰ)求證:平面ACC′A′⊥平面BDE;
          (Ⅱ)若點P為棱C′D′的中點,點E為棱CC′的中點,求二面角P-BD-E的余弦值.

          查看答案和解析>>

          同步練習冊答案