日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知復(fù)數(shù)z=(1-m2)+(m2-3m+2)i,其中m∈R
          ( I)若復(fù)數(shù)z=0,求m的值;
          ( II)若復(fù)數(shù)z為純虛數(shù),求m的值;
          ( III)若復(fù)數(shù)z在復(fù)平面上所表示的點在第三象限,求m的取值范圍.
          【答案】分析:(I)根據(jù)兩個復(fù)數(shù)相等的充要條件可得 1-m2 =0,且m2-3m+2=0,由此解得m的值.
          (II)根據(jù)純虛數(shù)的定義可得,1-m2 =0,且m2-3m+2≠0,由此解得m的值.
          (III)由題意可得1-m2 <0,且m2-3m+2<0,由此求得m的取值范圍.
          解答:解:(I)∵復(fù)數(shù)z=(1-m2)+(m2-3m+2)i,其中m∈R,若復(fù)數(shù)z=0,
          則有 1-m2 =0,且m2-3m+2=0,解得 m=1.
          (II)若復(fù)數(shù)z為純虛數(shù),則有1-m2 =0,且m2-3m+2≠0,解得 m=-1.
          (III)若復(fù)數(shù)z在復(fù)平面上所表示的點在第三象限,則有1-m2 <0,且m2-3m+2<0,
          解得 1<m<2.
          點評:本題主要考查復(fù)數(shù)的基本概念,兩個復(fù)數(shù)相等的充要條件,一元二次不等式的解法,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知復(fù)數(shù)z=(m2-m-6)+(m2-2m-15)i,m∈R
          (1)當(dāng)m=3時,求|z|;
          (2)當(dāng)m為何值時,z為純虛數(shù);
          (3)若復(fù)數(shù)z在復(fù)平面上所對應(yīng)的點在第四象限,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知復(fù)數(shù)z=(1+2m)+(3+m)i,(m∈R).
          (1)若復(fù)數(shù)z在復(fù)平面上所對應(yīng)的點在第二象限,求m的取值范圍;
          (2)求當(dāng)m為何值時,|z|最小,并求|z|的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知復(fù)數(shù)z=(1-m2)+(m2-3m+2)i,其中m∈R
          ( I)若復(fù)數(shù)z=0,求m的值;
          ( II)若復(fù)數(shù)z為純虛數(shù),求m的值;
          ( III)若復(fù)數(shù)z在復(fù)平面上所表示的點在第三象限,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知復(fù)數(shù)Z=2m-1+(m+1)i
          (1)若復(fù)數(shù)Z所對應(yīng)的點在第一象限,求實數(shù)m的取值范圍;
          (2)若復(fù)數(shù)|Z|≤
          3
          ,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i(m∈R)在復(fù)平面內(nèi)所對應(yīng)的點為A.
          (1)若復(fù)數(shù)z+4m為純虛數(shù),求實數(shù)m的值;
          (2)若點A在第二象限,求實數(shù)M的取值范圍;
          (3)求|z|的最小值及此時實數(shù)m的值.

          查看答案和解析>>

          同步練習(xí)冊答案