日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知等比數(shù)列{bn}與數(shù)列{an}滿足bn=3an(n∈N*)判斷{an}是何種數(shù)列,并給出證明.
          分析:由題設(shè)條件知bn=3an,bn+1=3an+1,由此可知
          bn+1
          bn
          =3an+1-an=q
          ,所以an+1-an=log3q,由此可知{an}是等差數(shù)列.
          解答:解:{an}是等差數(shù)列.
          證明:∵bn=3an,bn+1=3an+1,
          bn+1
          bn
          =3an+1-an=q
          ,
          ∴an+1-an=log3q,
          ∴{an}是等差數(shù)列
          點(diǎn)評(píng):本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時(shí)要注意公式的合理運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足2an+1=an+an+2(n=1,2,3,…),它的前n項(xiàng)和為Sn,且a3=5,S6=36.
          (1)求an
          (2)已知等比數(shù)列{bn}滿足b1+b2=1+a,b4+b5=a3+a4(a≠-1),設(shè)數(shù)列{an•bn}的前n項(xiàng)和為Tn,求Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等比數(shù)列{bn},公比q>0,b3=8,前n項(xiàng)和Tn滿足T3=14,且數(shù)列{an}滿足an+1-2log2bn=0(n∈N*
          (1)求{an},{bn}的通項(xiàng)公式;
          (2)數(shù)列{cn}滿足cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知等比數(shù)列{bn}與數(shù)列{an}滿足bn=3an,n∈N*
          (1)判斷{an}是何種數(shù)列,并給出證明;
          (2)若a8+a13=m,求b1b2…b20

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)已知等差數(shù)列{an}滿足a3+a6=9,a1a8=8,a1>a8,求數(shù)列{an}的前n項(xiàng)和Sn;
          (2)已知等比數(shù)列{bn}滿足b3=2,b2+b4=
          203
          ,求{bn}的通項(xiàng)公式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案