日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓C的離心率為,左、右頂點分別為A,B,點M是橢圓C上異于A,B的一點,直線AMy軸交于點P

          (Ⅰ)若點P在橢圓C的內(nèi)部,求直線AM的斜率的取值范圍;

          (Ⅱ)設(shè)橢圓C的右焦點為F,點Qy軸上,且∠PFQ=90°,求證:AQBM

          【答案】(Ⅰ)(-,00,)(Ⅱ)詳見解析

          【解析】

          (Ⅰ)根據(jù)題意可得得c2a2﹣2,由e,解得即可出橢圓的方程,再根據(jù)點在其內(nèi)部,即可線AM的斜率的取值范圍,

          (Ⅱ)題意F,0),設(shè)Q(0,y1),Mx0y0),其中x0≠±2,則1,可得直線AM的方程yx+2),求出點Q的坐標,根據(jù)向量的數(shù)量積和斜率公式,即可求出kBMkAQ=0,問題得以證明

          解:(Ⅰ)由題意可得c2=a2-2

          e==,

          a=2c=,

          ∴橢圓的方程為+=1,

          設(shè)P0,m),由點P在橢圓C的內(nèi)部,得-m,

          又∵A-20),

          ∴直線AM的斜率kAM==∈(-,),

          M為橢圓C上異于A,B的一點,

          kAM∈(-,0),(0,),

          (Ⅱ)由題意F,0),設(shè)Q0,y1),Mx0,y0),其中x0≠±2,

          +=1

          直線AM的方程為y=x+2),

          x=0,得點P的坐標為(0,),

          由∠PFQ=90°,可得=0

          ∴(-)(-,y1=0

          2+y1=0,

          解得y1=-,

          Q0,-),

          kBM=,kAQ=-

          kBM-kAQ=+=0

          kBM=kAQ,即AQBM

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系xOy中,將直線l沿x軸正方向平移3個單位長度,沿y軸正方向平移5個單位長度,得到直線l1.再將直線l1沿x軸正方向平移1個單位長度,沿y軸負方向平移2個單位長度,又與直線l重合.若直線l與直線l1關(guān)于點(2,3)對稱,則直線l的方程是________________.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】[選修4-4:坐標系與參數(shù)方程]

          在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的方程為

          (1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程和直線的極坐標方程;

          (2)在(1)的條件下,直線的極坐標方程為,設(shè)曲線與直線的交于點和點,曲線與直線的交于點和點,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)。

          1)若是曲線的切線,的值;

          2)若,的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)且,,曲線的參數(shù)方程為為參數(shù)),以為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

          (1)求的普通方程及的直角坐標方程;

          (2)若曲線與曲線分別交于點,,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】華為董事會決定投資開發(fā)新款軟件,估計能獲得萬元到萬元的投資收益,討論了一個對課題組的獎勵方案:獎金(單位:萬元)隨投資收益(單位:萬元)的增加而增加,且獎金不超過萬元,同時獎金不超過投資收益的.

          1)請分析函數(shù)是否符合華為要求的獎勵函數(shù)模型,并說明原因;

          2)若華為公司采用模型函數(shù)作為獎勵函數(shù)模型,試確定正整數(shù)的取值集合.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某大學為了調(diào)查該校學生性別與身高的關(guān)系,對該校1000名學生按照的比例進行抽樣調(diào)查,得到身高頻數(shù)分布表如下:

          男生身高頻率分布表

          男生身高

          (單位:厘米)

          頻數(shù)

          7

          10

          19

          18

          4

          2

          女生身高頻數(shù)分布表

          女生身高

          (單位:厘米)

          頻數(shù)

          3

          10

          15

          6

          3

          3

          1)估計這1000名學生中女生的人數(shù);

          2)估計這1000名學生中身高在的概率;

          3)在樣本中,從身高在的女生中任取3名女生進行調(diào)查,設(shè)表示所選3名學生中身高在的人數(shù),求的分布列和數(shù)學期望.(身高單位:厘米)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系xOy中,橢圓C的中心在坐標原點O,其右焦點為,且點在橢圓C上.

          求橢圓C的方程;

          設(shè)橢圓的左、右頂點分別為A、BM是橢圓上異于A,B的任意一點,直線MF交橢圓C于另一點N,直線MB交直線Q點,求證:AN,Q三點在同一條直線上.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某大型超市抽查了100天該超市的日純利潤數(shù)據(jù),并分成了以下幾組(單位:萬元):,,,,.統(tǒng)計結(jié)果如下表所示(統(tǒng)計表中每個小組取中間值作為該組數(shù)據(jù)的替代值):

          組別

          頻數(shù)

          5

          20

          30

          30

          10

          5

          1)求這100天該大型超市日純利潤的平均數(shù)及中位數(shù);

          2)該天型超市負責人決定利用分層抽樣的方法從前2組中隨機抽出5天數(shù)據(jù)分析日純利潤較少的原因,并從這5天數(shù)據(jù)中再抽出其中2天數(shù)據(jù)進行深入分析,求這2天的數(shù)據(jù)恰好來自不同組的概率;

          3)利用上述樣本分布估計總體分布,解決下面問題:該大型超市總經(jīng)理根據(jù)每天的純利潤給員工制定了兩種獎勵方案:

          方案一:記日純利潤為萬元,當時,獎勵每位員工40/天;當時,獎勵每位員工80/天;當時,獎勵每位員工120/天;

          方案二:日純利潤低于總體中位數(shù)時每名員工發(fā)放獎金50/天,日純利潤不低于總體中位數(shù)時每名員工發(fā)放80元獎金/天;

          小張恰好為該大型超市的一位員工,則從統(tǒng)計角度看,小張選擇哪種獎勵方案更有利?

          查看答案和解析>>

          同步練習冊答案