日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓C:x2+y2=1,點P(x0,y0)在直線x-y-2=0上,O為坐標原點,若圓C上存在點Q,使∠OPQ=30°,則x0的取值范圍是( 。
          A.[-1,1]B.[0,1]C.[-2,2]D.[0,2]
          過P作⊙C切線交⊙C于R,根據(jù)圓的切線性質(zhì),有∠OPR≥∠OPQ=30°.
          反過來,如果∠OPR≥30°,則存在⊙C上點Q使得∠OPQ=30°.
          ∴若圓C上存在點Q,使∠OPQ=30°,則∠OPR≥30°
          ∵|OR|=1,∴|OP|>2時不成立,∴|OP|≤2.
          ∵|OP|2=x02+y02=x02+(x0-2)2=2x02-4x0+2
          ∴2x02-4x0+2≤2,解得,0≤x02≤2∴x0的取值范圍是[0,2]
          故選D
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件雙曲線的標準方程為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
          7
          ,求此圓方程.
          (2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
          (1)當r=1時,試用k表示點B的坐標;
          (2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
          qp
          ,其中p、q均為整數(shù)且p、q互質(zhì))
          (3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
          當0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準線相切,若直線l:
          x
          a
          y
          b
          =1
          與圓C有公共點,且公共點都為整點(整點是指橫坐標.縱坐標都是整數(shù)的點),那么直線l共有(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=(  )

          查看答案和解析>>

          同步練習(xí)冊答案