日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,已知雙曲線x2-
          y2
          3
          =1
          ,A,C分別是虛軸的上、下頂點,B是左頂點,F(xiàn)為左焦點,直線AB與FC相交于點D,則∠BDF的余弦值是( 。
          A、
          7
          7
          B、
          5
          7
          7
          C、
          7
          14
          D、
          5
          7
          14
          分析:利用雙曲線的簡單性質(zhì)求出直線方程,求出三角形三個頂點的坐標(biāo),利用余弦定理求得cos∠BDF 的值.
          解答:解:由題意得A(0,b),C(0,-b),B(-a,0),F(xiàn)(-c,0),
          c
          a
          =2.
          ∴BF=c-a=a,BD 的方程為
          x
          -a
          +
          y
          b
          =1
          ,即  bx-ay+ab=0,
          DC的方程為 
          x
          -c
          y
          -b
          =1
          ,即 bx+cy+bc=0,即 bx+2ay+2ab=0,
          bx - ay +ab = 0
          bx +2ay + 2ab = 0 
          得 D (-
          4a
          3
          ,-
          b
          3
          ),又 b=
          c2a2
          =
          3
           a,
          ∴FD=
          (-c+
          4
          3
          a)
          2
          +
          b2
          9
          =
          7a2
          9
          ,BD=
          (-a+
          4
          3
          a)
          2
          +
          b2
          9
          =
          4
          9
          a2

          三角形BDF中,由余弦定理得 a2
          7
          9
          a2+
          4
          9
          a2-2
          7a2
          9
          4a2
          9
          cos∠BDF,
          ∴cos∠BDF=
          7
          14

          故選 C.
          點評:本題考查求直線方程,求兩直線的焦點坐標(biāo),余弦定理,以及雙曲線的簡單性質(zhì)的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          (b>a>0)且a∈[1,2],它的左、右焦點為F1,F(xiàn)2,左右頂點分別為A、B.過F2作圓x2+y2=a2的切線,切點為T,交雙曲線與P、Q兩點.
          (Ⅰ)求證直線PQ與雙曲線的一條漸近線垂直.
          (Ⅱ)若M為PF2的中點,O為坐標(biāo)原點,|OM|-|MT|=1,|PQ|=λ|AB|,求實數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•上海)如圖,已知雙曲線C1
          x2
          2
          -y2=1
          ,曲線C2:|y|=|x|+1,P是平面內(nèi)一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1-C2型點”
          (1)在正確證明C1的左焦點是“C1-C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);
          (2)設(shè)直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”;
          (3)求證:圓x2+y2=
          1
          2
          內(nèi)的點都不是“C1-C2型點”

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(上海卷解析版) 題型:填空題

          如圖,已知雙曲線C1,曲線C2:|y|=|x|+1,P是平面內(nèi)一點,若存在過點P的直線與C1,C2都有公共點,則稱P為“C1﹣C2型點“

          (1)在正確證明C1的左焦點是“C1﹣C2型點“時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證);

          (2)設(shè)直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1﹣C2型點”;

          (3)求證:圓x2+y2=內(nèi)的點都不是“C1﹣C2型點”

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:湖北省模擬題 題型:解答題

          如圖,已知雙曲線x2-y2=1的左、右頂點分別為A1、A2,動直線l:y=kx+m與圓x2+y2=1相切,且與雙曲線左、右兩支的交點分別為P1(x1,y1),P2(x2,y2)。
          (1)求k的取值范圍,并求x2-x1的最小值;
          (2)記直線P1A1的斜率為k1,直線P2A2的斜率為k2,那么,k1·k2是定值嗎?證明你的結(jié)論。

          查看答案和解析>>