日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)
          如圖橢圓的兩個焦點為、和頂點、構(gòu)成面積為32的正方形.

          (1)求此時橢圓的方程;
          (2)設(shè)斜率為的直線與橢圓相交于不同的兩點、、的中點,且. 問:、兩點能否關(guān)于直線對稱. 若能,求出的取值范圍;若不能,請說明理由.

          (1) . (2) 當(dāng)時,、兩點關(guān)于過點、的直線對稱.

          解析試題分析:由已知可得,所以.
          所求橢圓方程為.
          ②設(shè)直線的方程為,代入,
          .
          由直線與橢圓相交于不同的兩點知
          .   ②
          要使、兩點關(guān)于過點的直線對稱,必須.
          設(shè),則,.
          ,,
          解得.  ③
          由②、③得,,
          ,.  .
          故當(dāng)時,、兩點關(guān)于過點、的直線對稱.
          考點:本試題考查了橢圓的知識。
          點評:解決該試題關(guān)鍵是對于橢圓方程的求解,要運用其性質(zhì)來得到關(guān)于a,b,c的關(guān)系式來得到結(jié)論,而對于直線與橢圓的位置關(guān)系的考查,要聯(lián)立方程組,結(jié)合韋達(dá)定理和判別式來期間誒得到范圍,屬于中檔題。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)
          已知拋物線經(jīng)過橢圓的兩個焦點.設(shè),又不在軸上的兩個交點,若的重心(中線的交點)在拋物線上,

          (1)求的方程.
          (2)有哪幾條直線與都相切?(求出公切線方程)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)
          橢圓的左、右焦點分別為、,點滿足
          (1)求橢圓的離心率
          (2)設(shè)直線與橢圓相交于兩點,若直線與圓相交于兩點,且,求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)
          如圖,為橢圓上的一個動點,弦、分別過焦點、,當(dāng)垂直于軸時,恰好有

          (Ⅰ)求橢圓的離心率;
          (Ⅱ)設(shè).
          ①當(dāng)點恰為橢圓短軸的一個端點時,求的值;
          ②當(dāng)點為該橢圓上的一個動點時,試判斷是否為定值?
          若是,請證明;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,,是拋物線(為正常數(shù))上的兩個動點,直線AB與x軸交于點P,與y軸交于點Q,且

          (Ⅰ)求證:直線AB過拋物線C的焦點;
          (Ⅱ)是否存在直線AB,使得若存在,求出直線AB的方程;若不存在,請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (13分) 如圖,已知橢圓的兩個焦點分別為,斜率為k的直線l過左焦點F1且與橢圓的交點為A,B與y軸交點為C,又B為線段CF1的中點,若,求橢圓離心率e的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓過點,且離心率
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)是否存在過點的直線交橢圓于不同的兩點MN,且滿足(其中點O為坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分12分)過點作直線與拋物線相交于兩點,圓

          (1)若拋物線在點處的切線恰好與圓相切,求直線的方程;
          (2)過點分別作圓的切線,試求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案