日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,AA1,BB1是圓柱的母線,AB是圓柱底面圓的直徑,C是底面圓周上異于A,B的任意一點,AA1=AB=4.
          (1)求證:平面A1BC⊥平面A1AC;
          (2)求三棱錐A1-ABC的體積V最大時二面角A-A1B-C的大小的余弦值.
          分析:(1)根據(jù)AB是圓的直徑,得到BC⊥AC,用線面垂直的性質(zhì)定理得到AA1⊥BC,最后根據(jù)線面垂直的判定定理,可得BC⊥平面AA1C,又BC?面A1BC,即得證;
          (2)設(shè)AC=a,BC=b,則a2+b2=16,可得V(x)=
          1
          3
          •4•
          1
          2
          •a•b=
          2
          3
          ab≤
          2
          3
          a2+b2
          2
          =
          32
          3
          ,故當(dāng)AC=BC時三棱錐A1-ABC的體積V最大,由題意知,∠CDO為二面角A-A1B-C的平面角.故得到二面角A-A1B-C的大小的余弦值為
          3
          3
          解答:(1)證明:∵AA1⊥平面ABC,BC?平面ABC.
          ∴AA1⊥BC,又AB為斜邊,∴BC⊥AC,又AA1∩AC=A,
          ∴BC⊥平面A1AC,
          又BC?面A1BC,∴面A1BC⊥平面AA1C;
          (2)解:在Rt△A1AB中,AA1=AB=4,
          設(shè)AC=a,BC=b,則a2+b2=16
          V(x)=
          1
          3
          •4•
          1
          2
          •a•b=
          2
          3
          ab≤
          2
          3
          a2+b2
          2
          =
          32
          3
          ,當(dāng)a=b時取等號.
          ∴AC=BC時三棱錐A1-ABC的體積V最大,
          取AB中點O,則CO⊥AB,
          ∵AA1⊥平面ABC,∴AA1⊥CO
          ∴CO⊥面A1BC,∴CO⊥A1B
          做OD⊥A1B于D,連接CD
          則A1B⊥面COD
          ∴∠CDO為二面角A-A1B-C的平面              
          又∵CO=OB=2,OD=
          2
          ,
          CD=
          6

          cos∠CDO=
          OD
          CD
          =
          3
          3
          點評:本題以圓柱為載體,求錐體體積的最大值并求此時直線與平面所成角的正弦,著重考查了線面垂直的判定與性質(zhì)、直線與平面所成角等知識,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,AA1與BB1相交于點O,AB∥A1B1且AB=
          12
          A1B1.若△AOB的外接圓的直徑為1,則△A1OB1的外接圓的直徑為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,AA1、BB1為圓柱OO1的母線,BC是底面圓O的直徑,D、E分別是AA1、CB1的中點,DE⊥面CBB1
          (1)證明:DE∥面ABC;
          (2)求四棱錐C-ABB1A1與圓柱OO1的體積比;
          (3)若BB1=BC,求CA1與面BB1C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,AA1、BB1為圓柱OO1的母線,BC是底面圓O的直徑,D、E分別是AA1、CB1的中點.
          (I)證明:DE∥平面ABC;
          (Ⅱ)若BB1=BC=2,求三棱錐A-A1BC的體積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•東莞一模)如圖,AA1、BB1為圓柱OO1的母線,BC是底面圓O的直徑,D、E分別是AA1、CB1的中點,DE⊥面CBB1
          (1)證明:DE∥面ABC;
          (2)證明:面A1B1C⊥面A1AC;
          (3)求四棱錐C-ABB1A1與圓柱OO1的體積比.

          查看答案和解析>>

          同步練習(xí)冊答案