日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若函數(shù) 有兩個(gè)極值點(diǎn),,其中 ,,且,則方程 的實(shí)根個(gè)數(shù)為________________

          【答案】5

          【解析】

          由函數(shù)f(x)=﹣lnx+ax2+bx﹣a﹣2b有兩個(gè)極值點(diǎn)x1,x2,可得2ax2+bx﹣1=0有兩個(gè)不相等的正根,必有△=b2+8a>0.而方程2a(f(x))2+bf(x)﹣1=0的△1=△>0,可知此方程有兩解且f(x)=x1x2.再分別討論利用平移變換即可解出方程f(x)=x1f(x)=x2解的個(gè)數(shù).

          ∵函數(shù)f(x)=﹣lnx+ax2+bx﹣a﹣2b有兩個(gè)極值點(diǎn)x1,x2,

          ∴f′(x)=﹣+2ax+b=,

          即為2ax2+bx﹣1=0有兩個(gè)不相等的正根,

          ∴△=b2+8a>0.解得x=

          ∵x1<x2,﹣,b>0,

          ∴x1=,x2=

          而方程2a(f(x))2+bf(x)﹣1=0的△1=△>0,

          ∴此方程有兩解且f(x)=x1x2

          即有0<x1<x2,:∵x1,x2>0x1x2=﹣>1

          ∴x2>1,∵f(1)=﹣b<0∴f(x1)<0,

          f(x2)>0.

          ①根據(jù)f′(x)畫(huà)出f(x)的簡(jiǎn)圖,

          ∵f(x2)=x2,由圖象可知方程f(x)=x2有兩解,方程f(x)=x1有三解.

          綜上①②可知:方程f(x)=x1f(x)=x2共有5個(gè)實(shí)數(shù)解.

          即關(guān)于x的方程2a(f(x))2+bf(x)﹣1=0的共有5不同實(shí)根.

          故答案為:5

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (1)證明PC⊥AD;
          (2)求二面角A﹣PC﹣D的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知不等式ax2﹣bx﹣1>0的解集是 ,則不等式x2﹣bx﹣a≥0的解集是( )
          A.{x|2<x<3}
          B.{x|x≤2或x≥3}
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知四棱柱ABCD﹣A1B1C1D1的底面ABCD為正方形,AA1⊥AC,M、N分別為棱AA1、CC1的中點(diǎn).

          (1)求證:直線MN⊥平面B1BD;
          (2)已知AA1=AB,AA1⊥AB,取線段C1D1的中點(diǎn)Q,求二面角Q﹣MD﹣N的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).

          (1)若曲線y=f(x)在點(diǎn)(2,f(2))處與直線y=8相切,求a,b的值;

          (2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示的鍍鋅鐵皮材料ABCD,上沿DC為圓弧,其圓心為A,圓半徑為2米,AD⊥AB,BC⊥AB,且BC=1米,F(xiàn)要用這塊材料裁一個(gè)矩形PEAF(其中P在圓弧DC上、E在線段AB上,F(xiàn)在線段AD上)做圓柱的側(cè)面,若以PE為母線,問(wèn)如何裁剪可使圓柱的體積最大?其最大值是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某工廠生產(chǎn)甲,乙兩種芯片,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為合格品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種芯片各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:

          測(cè)試指標(biāo)

          [70,76)

          [76,82)

          [82,88)

          [88,94)

          [94,100]

          芯片甲

          8

          12

          40

          32

          8

          芯片乙

          7

          18

          40

          29

          6


          (1)試分別估計(jì)芯片甲,芯片乙為合格品的概率;
          (2)生產(chǎn)一件芯片甲,若是合格品可盈利40元,若是次品則虧損5元;生產(chǎn)一件芯片乙,若是合格品可盈利50元,若是次品則虧損10元.在(I)的前提下,
          (i)記X為生產(chǎn)1件芯片甲和1件芯片乙所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
          (ii)求生產(chǎn)5件芯片乙所獲得的利潤(rùn)不少于140元的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)點(diǎn)F1(﹣c,0),F(xiàn)2(c,0)分別是橢圓C: =1(a>1)的左、右焦點(diǎn),P為橢圓C上任意一點(diǎn),且 的最小值為0.

          (1)求橢圓C的方程;
          (2)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l,F(xiàn)2N⊥l,求四邊形F1MNF2面積S的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,∠A=60°,AB=3,AC=2.若 =2 , (λ∈R),且 =﹣4,則λ的值為

          查看答案和解析>>

          同步練習(xí)冊(cè)答案