【題目】已知函數(shù),
在
和
處取得極值,且
,曲線
在
處的切線與直線
垂直.
(Ⅰ)求的解析式;
(Ⅱ)證明關(guān)于的方程
至多只有兩個(gè)實(shí)數(shù)根(其中
是
的導(dǎo)函數(shù),
是自然對數(shù)的底數(shù)).
【答案】(Ⅰ)(Ⅱ)見解析.
【解析】試題分析:(Ⅰ)先求,根據(jù)韋達(dá)定理及
列出關(guān)于
的方程組,進(jìn)而可得結(jié)果;(Ⅱ)圓方程等價(jià)于
,令
,研究函數(shù)
的單調(diào)性,討論
與
兩種情況分別證明即可.
試題解析:(Ⅰ) ,因?yàn)?/span>
在
和
處取得極值,
所以和
是方程
的兩個(gè)根,則
,
,
又,則
,所以
.
由已知曲線在
處的切線與直線
垂直,所以可得
,
即,由此可得
解得
所以
(Ⅱ)對于,
(1)當(dāng)時(shí),得
,方程無實(shí)數(shù)根;
(2)當(dāng)時(shí),得
,令
,
,
當(dāng)時(shí),
;
當(dāng)或
時(shí),
;當(dāng)
時(shí),
.
∴的單調(diào)遞減區(qū)間是
和
,單調(diào)遞增區(qū)間是
,
函數(shù)在
和
處分別取得極小值和極大值.
,
,
對于,由于
恒成立,
且是與
軸有兩個(gè)交點(diǎn)、開口向上的拋物線,
所以曲線與
軸有且只有兩個(gè)交點(diǎn),從而
無最大值,
.
若時(shí)
,直線
與曲線
至多有兩個(gè)交點(diǎn);
若
,直線
與曲線
只有一個(gè)交點(diǎn);
綜上所述,無論取何實(shí)數(shù),方程
至多只有兩實(shí)數(shù)根.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,矩形中,
,
,沿對角線
把
折起,使點(diǎn)
在平面
上的射影
落在
上.
(1)求證:平面平面
;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( )
A.y=﹣x3
B.y=
C.y=x
D.y=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市地產(chǎn)數(shù)據(jù)研究所的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價(jià)走勢如下圖所示,3月至7月房價(jià)上漲過快,政府從8月采取宏觀調(diào)控措施,10月份開始房價(jià)得到很好的抑制.
(1)地產(chǎn)數(shù)據(jù)研究所發(fā)現(xiàn),3月至7月的各月均價(jià)(萬元/平方米)與月份
之間具有較強(qiáng)的線性相關(guān)關(guān)系,試求
關(guān)于
的回歸方程;
(2)政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測第12月份該市新建住宅的銷售均價(jià).
參考數(shù)據(jù): ,
,
;
回歸方程中斜率和截距的最小二乘法估計(jì)公示分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與拋物線
共焦點(diǎn)
,拋物線上的點(diǎn)M到y軸的距離等于
,且橢圓與拋物線的交點(diǎn)Q滿足
.
(I)求拋物線的方程和橢圓的方程;
(II)過拋物線上的點(diǎn)作拋物線的切線
交橢圓于
、
兩點(diǎn),設(shè)線段AB的中點(diǎn)為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù);
(1)求函數(shù)f(x)的周期以及單調(diào)遞增區(qū)間;
(2)在給出的直角坐標(biāo)系中,請用五點(diǎn)作圖法畫出f(x)在區(qū)間[0,π]上的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)滿足f(2)=0,且在(﹣∞,0)上是增函數(shù);又定義行列式=a1a4﹣a2a3; 函數(shù)g(θ)=
(其中0≤θ≤
).
(1)證明:函數(shù)f(x)在(0,+∞)上也是增函數(shù);
(2)若函數(shù)g(θ)的最大值為4,求m的值;
(3)若記集合M={m|任意的0≤θ≤ , g(θ)>0},N={m|任意的0≤θ≤
, f[g(θ)]<0},求M∩N.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,﹣),(0,
)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C,直線y=kx+1與C交于A,B兩點(diǎn).
(1)寫出C的方程;
(2)若⊥
, 求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com