日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,四棱錐的底面為菱形,PA⊥底面ABCD,E、F分別是AB與PD的中點(diǎn).
          (1)求證:PC⊥BD;
          (2)求證:AF∥平面PEC.
          分析:(1)連接AC,根據(jù)底面ABCD為菱形,則AC⊥BD,而PA⊥平面ABCD,根據(jù)線面垂直的性質(zhì)可知PA⊥BD,再根據(jù)線面垂直的判定定理可知BD⊥面PAC,PC?平面PAC,根據(jù)線面垂直的性質(zhì)可知PC⊥BD.
          (2)欲證AF∥平面PEC,根據(jù)直線與平面平行的判定定理可知只需證AF與平面PEC內(nèi)一直線平行即可,取PC的中點(diǎn)K,連接FK、EK.
          則FK∥CD,FK=
          1
          2
          CD
          ,又AE∥CD,AE=
          1
          2
          CD
          ,得到四邊形AEKF是平行四邊形,從而AF∥EK,又EK?平面PEC,AF?平面PEC滿足定理所需條件.
          解答:證明:(1)連接AC,因底面ABCD為菱形,故AC⊥BD.
          ∵PA⊥平面ABCD,BD?平面ABCD,∴PA⊥BD.(4分)
          又AC⊥BD,故BD⊥面PAC.∵PC?平面PAC,∴PC⊥BD.(6分)
          (2)取PC的中點(diǎn)K,連接FK、EK.
          則FK∥CD,FK=
          1
          2
          CD
          .(8分)
          又AE∥CD,AE=
          1
          2
          CD
          ,(10分)
          則四邊形AEKF是平行四邊形,∴AF∥EK.(12分)
          又EK?平面PEC,AF?平面PEC,∴AF∥平面PEC.(14分)
          點(diǎn)評(píng):本題主要考查了直線與平面垂直的性質(zhì),以及直線與平面平行的判定,同時(shí)考查了空間想象能力、推理能力,以及轉(zhuǎn)化與劃歸的數(shù)學(xué)思想,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿分12分)

          如圖,四棱錐的底面為正方形,側(cè)棱底面,且,分別是線段的中點(diǎn).

          (Ⅰ)求證://平面

          (Ⅱ)求證:平面;

          (Ⅲ)求二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南長(zhǎng)沙重點(diǎn)中學(xué)高三上學(xué)期第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,四棱錐的底面為矩形,且,,,,

          (Ⅰ)平面PAD與平面PAB是否垂直?并說(shuō)明理由;

          (Ⅱ)求直線PC與平面ABCD所成角的正弦值.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三上學(xué)期期末試題理科數(shù)學(xué) 題型:解答題

          如圖,四棱錐的底面為矩形,且,,

          (Ⅰ)求證:平面平面

          (Ⅱ)求直線與平面所成角的正弦值

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省六校聯(lián)合體高三第二次聯(lián)考數(shù)學(xué)理卷 題型:解答題

          (本小題滿分14分)

              如圖,四棱錐的底面為菱形,平面,、分別為的中點(diǎn)。

             (I)求證:平面

             (Ⅱ)求三棱錐的體積;

             (Ⅲ)求平面與平面所成的銳二面角大小的余弦值。

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案