日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .圖(1)~(4)分別包含1個、5個、13個、25個第二十九屆北京奧運會吉祥物“福娃迎迎”,按同樣的方式構(gòu)造圖形,設(shè)第個圖形包含個“福娃迎迎”,

             ; ____________.(答案用數(shù)字或的解析式表示)

           

          【答案】

          41,4(n-1)

          【解析】

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,邊長為4的正方形ABCD中
          (1)點E,F(xiàn)分別是AB,BC的中點,將△AED,△CFD分別沿DE,DF折A起,使A,C兩點重合于點A',求證:面A'DF⊥面A'EF.
          (2)當(dāng)BE=BF=
          14
          BC時,求三棱錐A'-EFD的高.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題包括(1)、(2)、(3)、(4)四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
          若多做,則按作答的前兩題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
          (1)、選修4-1:幾何證明選講
          如圖,∠PAQ是直角,圓O與AP相切于點T,與AQ相交于兩點B,C.求證:BT平分∠OBA
          (2)選修4-2:矩陣與變換(本小題滿分10分)
          若點A(2,2)在矩陣M=
          cosα-sinα
          sinαcosα
          對應(yīng)變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣
          (3)選修4-2:矩陣與變換(本小題滿分10分)
          在極坐標(biāo)系中,A為曲線ρ2+2ρcosθ-3=0上的動點,B為直線ρcosθ+ρsinθ-7=0上的動點,求AB的最小值.
          (4)選修4-5:不等式選講(本小題滿分10分)
          已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•泰安二模)形狀如圖所示的三個游戲盤中(圖(1)是正方形,M、N分別是所在邊中點,圖(2)是半徑分別為2和4的兩個同心圓,O為圓心,圖(3)是正六邊形,點P為其中心)各有一個玻璃小球,依次水平搖動三個游戲盤,當(dāng)小球靜止后,就完成了一局游戲.

          (1)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?
          (II)用隨機變量ξ表示一局游戲后,小球停在陰影部分的事件個數(shù)與小球沒有停在陰影部分的事件個數(shù)之差的絕對值,求隨機變量ξ的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•河北區(qū)二模)已知如圖(1),梯形ABCD中,AD∥BC,∠ABC=∠BAD=
          π2
          ,AB=BC=2AD=4,E、F分別是AB、CD上的動點,且EF∥BC,設(shè)AE=x(0<x<4).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF,如圖(2).
          (Ⅰ)求證:平面ABE⊥平面ABCD;
          (Ⅱ)若以B、C、D、F為頂點的三棱錐的體積記為f(x),求f(x)的最大值;
          (Ⅲ)當(dāng)f(x)取得最大值時,求異面直線CD和BE所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•珠海二模)如圖,長方體ABCD-A1B1C1D1中,CC1=4,AB=BC=3.
          (1)若E、F分別是BC1、A1C1中點,求證:EF∥平面DCC1
          (2)求二面角A1-BC1-D的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案