日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)函數(shù)f(x)=(1+x)2-2ln(1+x)
          (1)若定義域內(nèi)存在x,使得不等式f(x)-m≤0成立,求實數(shù)m的最小值;
          (2)g(x)=f(x)-x2-x-a在區(qū)間[0,3]上恰有兩個不同的零點,求a范圍.
          【答案】分析:(1)存在x,使m≥f(xmin,故,由此導(dǎo)出f(xmin=f(0)=1,從而能夠求出實數(shù)m的最小值.
          (2)由g(x)=f(x)-x2-x-a在區(qū)間[0,3]上恰有兩個不同的零點,知x+1-2ln(1+x)=a有兩個交點,令h(x)=x+1-2ln(1+x),=,由此利用函數(shù)的單調(diào)性能夠求出a的取值范圍.
          解答:解:(1)存在x,使m≥f(xmin
          ∵f(x)=(1+x)2-2ln(1+x),

          =,x>-1.
          令f′(x)>0,得x>0,
          令f′(x)<0,得x<0,
          ∴y=f(x)在(-1,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,
          ∴f(xmin=f(0)=1,
          ∴m≥1,
          ∴實數(shù)m的最小值是1.
          (2)∵g(x)=f(x)-x2-x-a在區(qū)間[0,3]上恰有兩個不同的零點,
          ∴g(x)=x+1-a-2ln(1+x)在區(qū)間[0,3]上恰有兩個不同的零點,
          ∴x+1-2ln(1+x)=a有兩個交點,
          令h(x)=x+1-2ln(1+x),
          =
          由h′(x)>0,得x>1,
          由h′(x)<0,得x<1,
          ∴y=f(x)在[0,1]上單調(diào)遞減,在[1,3]上單調(diào)遞增,
          ∵h(0)=1-2ln1=1,
          h(1)=2-2ln2,
          h(3)=4-2ln4,
          ∴2-2ln2<a≤1.
          點評:本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)最值的應(yīng)用,解題時要認真審題,仔細解答,注意等價轉(zhuǎn)化思想的合理運用.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=ax3-3x+1(x∈R),若對于任意的x∈[-1,1]都有f(x)≥0成立,則實數(shù)a的值為
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•安徽)設(shè)函數(shù)f(x)=ax-(1+a2)x2,其中a>0,區(qū)間I={x|f(x)>0}
          (Ⅰ)求I的長度(注:區(qū)間(a,β)的長度定義為β-α);
          (Ⅱ)給定常數(shù)k∈(0,1),當1-k≤a≤1+k時,求I長度的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2007•浦東新區(qū)二模)記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素.
          (1)判斷函數(shù)f(x)=-x+1,g(x)=2x-1是否是M的元素;
          (2)設(shè)函數(shù)f(x)=log2(1-2x),求f(x)的反函數(shù)f-1(x),并判斷f(x)是否是M的元素;
          (3)f(x)=
          axx+b
          ∈M(a<0),求使f(x)<1成立的x的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          記函數(shù)f(x)=f1(x),f(f(x))=f2(x),它們定義域的交集為D,若對任意的x∈D,f2(x)=x,則稱f(x)是集合M的元素,
          例如f(x)=-x+1,對任意x∈R,f2(x)=f(f(x))=-(-x+1)+1=x,故f(x)=-x+1∈M.
          (1)設(shè)函數(shù)f(x)=log2(1-2x),判斷f(x)是否是M的元素,并求f(x)的反函數(shù)f-1(x);
          (2)f(x)=
          axx+b
          ∈M
          (a<0),求使f(x)<1成立的x的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)設(shè)函數(shù)f(x)=xlog2x+(1-x)log2(1-x)(0<x<1),求f(x)的最小值.
          (2)設(shè)正數(shù)P1,P2,P3,…P2n滿足P1+P2+…P2n=1,求證:P1log2P1+P2log2P2+P3log2P3+…+P2nlog2P2n≥-n.

          查看答案和解析>>

          同步練習冊答案