【題目】已知函數(shù)圖象相鄰兩條對(duì)稱(chēng)軸之間的距離為
,將函數(shù)
的圖象向左平移
個(gè)單位,得到的圖象關(guān)于
軸對(duì)稱(chēng),則( )
A. 函數(shù)的周期為
B. 函數(shù)
圖象關(guān)于點(diǎn)
對(duì)稱(chēng)
C. 函數(shù)圖象關(guān)于直線
對(duì)稱(chēng) D. 函數(shù)
在
上單調(diào)
【答案】D
【解析】
根據(jù)對(duì)稱(chēng)軸之間的距離,求得周期,再根據(jù)周期公式求得;再平移后,根據(jù)關(guān)于y軸對(duì)稱(chēng)可求得
的值,進(jìn)而求得解析式。根據(jù)解析式判斷各選項(xiàng)是否正確。
因?yàn)楹瘮?shù)圖象相鄰兩條對(duì)稱(chēng)軸之間的距離為
所以周期 ,則
所以函數(shù)
函數(shù)的圖象向左平移
單位,得到的解析式為
因?yàn)閳D象關(guān)于y軸對(duì)稱(chēng),所以
,即
,k∈ Z
因?yàn)?/span>
所以
即
所以周期,所以A錯(cuò)誤
對(duì)稱(chēng)中心滿(mǎn)足,解得
,所以B錯(cuò)誤
對(duì)稱(chēng)軸滿(mǎn)足,解得
,所以C錯(cuò)誤
單調(diào)增區(qū)間滿(mǎn)足,解得
,而
在
內(nèi),所以D正確
所以選D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小電子產(chǎn)品2018年的價(jià)格為9元/件,年銷(xiāo)量為件,經(jīng)銷(xiāo)商計(jì)劃在2019年將該電子產(chǎn)品的價(jià)格降為
元/件(其中
),經(jīng)調(diào)查,顧客的期望價(jià)格為5元/件,經(jīng)測(cè)算,該電子產(chǎn)品的價(jià)格下降后年銷(xiāo)量新增加了
件(其中常數(shù)
).已知該電子產(chǎn)品的成本價(jià)格為4元/件.
(1)寫(xiě)出該電子產(chǎn)品價(jià)格下降后,經(jīng)銷(xiāo)商的年收益與實(shí)際價(jià)格
的函數(shù)關(guān)系式:(年收益=年銷(xiāo)售收入-成本)
(2)設(shè),當(dāng)實(shí)際價(jià)格最低定為多少時(shí),仍然可以保證經(jīng)銷(xiāo)商2019年的收益比2018年至少增長(zhǎng)20%?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某輛汽車(chē)以千米
小時(shí)的速度在高速公路上勻速行駛(考慮到高速公路行車(chē)安全要求
時(shí),每小時(shí)的油耗(所需要的汽油量)為
升,其中
為常數(shù),且
.
(1)若汽車(chē)以120千米小時(shí)的速度行駛時(shí),每小時(shí)的油耗為11.5升,欲使每小時(shí)的油耗不超過(guò)9升,求
的取值范圍;
(2)求該汽車(chē)行駛100千米的油耗的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(
,
,
)的部分圖像如圖所示.
(1)求函數(shù)的解析式及
圖像的對(duì)稱(chēng)軸方程;
(2)把函數(shù)圖像上點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的2倍(縱坐標(biāo)不變),再向左平移
個(gè)單位,得到函數(shù)
的圖象,求關(guān)于x的方程
在
時(shí)所有的實(shí)數(shù)根之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】,
,…,
是一個(gè)數(shù)列,對(duì)每個(gè)
,
,
.如果
,
兩數(shù)不同,寫(xiě)
;如果
,
兩數(shù)相同,寫(xiě)
.于是得到一個(gè)新數(shù)列
,
,…,
,其中
.重復(fù)上述方法,得到一個(gè)由0及1兩個(gè)數(shù)字組成的三角形數(shù)表,最后一行僅一個(gè)數(shù)字,求這張數(shù)字表中1的和的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,已知曲線的參數(shù)方程為
為參數(shù)
以原點(diǎn)為極點(diǎn)x軸正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為:
,直線
的極坐標(biāo)方程為
.
(Ⅰ)寫(xiě)出曲線的極坐標(biāo)方程,并指出它是何種曲線;
(Ⅱ)設(shè)與曲線
交于
兩點(diǎn),
與曲線
交于
兩點(diǎn),求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】類(lèi)似于平面直角坐標(biāo)系,定義平面斜坐標(biāo)系:設(shè)數(shù)軸、
的交點(diǎn)為
,與
、
軸正方向同向的單位向量分別是
、
,且
與
的夾角為
,其中
,由平面向量基本定理:對(duì)于平面內(nèi)的向量
,存在唯一有序?qū)崝?shù)對(duì)
,使得
,把
叫做點(diǎn)
在斜坐標(biāo)系
中的坐標(biāo),也叫做向量
在斜坐標(biāo)系
中的坐標(biāo),記為
,在平面斜坐標(biāo)系內(nèi),直線的方向向量、法向量、點(diǎn)方向式方程、一般式方程等概念與平面直角坐標(biāo)系內(nèi)相應(yīng)概念以相同方式定義,如
時(shí),方程
表示斜坐標(biāo)系內(nèi)一條過(guò)點(diǎn)
,且方向向量為
的直線.
(1)若,
,
,求
;
(2)若,已知點(diǎn)
和直線
;
①求的一個(gè)法向量;
②求點(diǎn)到直線
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(4,0)、B(1,0),動(dòng)點(diǎn)M滿(mǎn)足|AM|=2|BM|.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)直線l:x+y=4,點(diǎn)N∈l,過(guò)N作軌跡C的切線,切點(diǎn)為T,求NT取最小時(shí)的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系 中,橢圓
的中心為坐標(biāo)原點(diǎn),左焦點(diǎn)為F1(﹣1,0),離心率
.
(1)求橢圓G 的標(biāo)準(zhǔn)方程;
(2)已知直線 與橢圓
交于
兩點(diǎn),直線
與橢圓
交于
兩點(diǎn),且
,如圖所示.
①證明: ;
②求四邊形 的面積
的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com