日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列an=n-16,bn=(-1)n|n-15|,其中n∈N*
          (1)求滿足an+1=|bn|的所有正整數(shù)n的集合;
          (2)若n≠16,求數(shù)列
          bn
          an
          的最大值和最小值;
          (3)記數(shù)列{an bn}的前n項(xiàng)和為Sn,求所有滿足S2m=S2n(m<n)的有序整數(shù)對(duì)(m,n).
          (1)∵an+1=|bn|,
          ∴n-15=|n-15|,
          ∴當(dāng)n≥15時(shí),an+1=|bn|恒成立,
          當(dāng)n<15時(shí),n-15=-(n-15),
          ∴n=15
          n的集合{n|n≥15,n∈N*}….….….(4分)
          (2)∵
          bn
          an
          =
          (-1)n|n-15|
          n-16

          (i)當(dāng)n>16時(shí),n取偶數(shù)
          bn
          an
          =
          n-15
          n-16
          =1+
          1
          n-16

          當(dāng)n=18時(shí)(
          bn
          an
          max=
          3
          2
          無(wú)最小值
          n取奇數(shù)時(shí)
          bn
          an
          =-1-
          1
          n-16

          n=17時(shí)(
          bn
          an
          min=-2無(wú)最大值  …(8分)
          (ii)當(dāng)n<16時(shí),
          bn
          an
          =
          (-1)n(n-15)
          n-16

          當(dāng)n為偶數(shù)時(shí)
          bn
          an
          =
          -(n-15)
          n-16
          =-1-
          1
          n-16

          n=14時(shí)(
          bn
          an
          max=-
          1
          2
          bn
          an
          min=-
          13
          14

          當(dāng)n奇數(shù)  
          bn
          an
          =
          n-15
          n-16
          =1+
          1
          n-16
          ,n=1,(
          bn
          an
          max=1-
          1
          15
          =
          14
          15
          ,
          n=15,(
          bn
          an
          min=0    …(11分)
          綜上,
          bn
          an
          最大值為
          3
          2
          (n=18)最小值-2(n=17)….…..….(12分)
          (3)n≤15時(shí),bn=(-1)n-1(n-15),
          a2k-1b2k-1+a2kb2k=2 (16-2k)≥0,
          n>15時(shí),bn=(-1)n(n-15),
          a2k-1b2k-1+a2kb2k=2 (2k-16)>0,其中a15b15+a16b16=0
          ∴S16=S14   m=7,n=8….(16分)
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列an=
          n-1   (n為奇數(shù))
          n       (n為偶數(shù))
          ,則a1+a2+a3+a4+…+a99+a100=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列an=n-16,bn=(-1)n|n-15|,其中n∈N*
          (1)求滿足an+1=|bn|的所有正整數(shù)n的集合;
          (2)若n≠16,求數(shù)列
          bnan
          的最大值和最小值;
          (3)記數(shù)列{an bn}的前n項(xiàng)和為Sn,求所有滿足S2m=S2n(m<n)的有序整數(shù)對(duì)(m,n).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知數(shù)列an=(n+1)×(
          910
          )n,求{an}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知數(shù)列an=(n+1)×(
          9
          10
          )n,求{an}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:徐匯區(qū)模擬 題型:填空題

          已知數(shù)列an=
          n-1   (n為奇數(shù))
          n       (n為偶數(shù))
          ,則a1+a2+a3+a4+…+a99+a100=______.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案