【題目】已知函數(shù).
若曲線
在點
處的切線平行于
軸,求函數(shù)
的單調(diào)區(qū)間;
若
時,總有
,求實數(shù)
的取值范圍.
【答案】當
時,
,
在
上單調(diào)遞減;當
時,
,
在
上單調(diào)遞增;
.
【解析】
曲線在點
處的切線平行于
軸等價于
在
處的導數(shù)等于0.解出a的值,再求導判斷正負號,寫出單調(diào)區(qū)間。
將帶入不等式,化簡整理為
,轉化為討論
,在
上的最大值
,求出a的取值范圍。
由
得:
在點
處的切線斜率
,則
.
此時,
.
由,得
.
當時,
,
在
上單調(diào)遞減;
當時,
,
在
上單調(diào)遞增.
由
得:
.
設,
,則
.
,
.
① 當,即
時,
,
在
上單調(diào)遞增,
,不合要求,應舍去.
② 當,即
時,
,
在
上單調(diào)遞減,
,滿足要求.
③ 當,即
時,令
得
.
當時,
在
上單調(diào)遞減;當
時,
在
上單調(diào)遞增.
,
令
得
.
綜合得,的取值范圍為
.
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2x-.
(1)若f(x)=,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
,
(1)當時,求
的最大值和最小值;
(2)求實數(shù)的取值范圍,使
在區(qū)間
上是單調(diào)函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點滿足:
.
(1)求動點的軌跡
的方程;
(2)設過點的直線
與曲線
交于
兩點,點
關于
軸的對稱點為
(點
與點
不重合),證明:直線
恒過定點,并求該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點曲線
的一個焦點,
為坐標原點,點
為拋物線
上任意一點,過點
作
軸的平行線交拋物線的準線于
,直線
交拋物線于點
.
(Ⅰ)求拋物線的方程;
(Ⅱ)求證:直線過定點
,并求出此定點的坐標.
【答案】(I);(II)證明見解析.
【解析】試題分析:(Ⅰ)將曲線化為標準方程,可求得
的焦點坐標分別為
,可得
,所以
,即拋物線的方程為
;(Ⅱ)結合(Ⅰ),可設
,得
,從而直線
的方程為
,聯(lián)立直線與拋物線方程得
,解得
,直線
的方程為
,整理得
的方程為
,此時直線恒過定點
.
試題解析:(Ⅰ)由曲線,化為標準方程可得
, 所以曲線
是焦點在
軸上的雙曲線,其中
,故
,
的焦點坐標分別為
,因為拋物線的焦點坐標為
,由題意知
,所以
,即拋物線的方程為
.
(Ⅱ)由(Ⅰ)知拋物線的準線方程為
,設
,顯然
.故
,從而直線
的方程為
,聯(lián)立直線與拋物線方程得
,解得
①當,即
時,直線
的方程為
,
②當,即
時,直線
的方程為
,整理得
的方程為
,此時直線恒過定點
,
也在直線
的方程為
上,故直線
的方程恒過定點
.
【題型】解答題
【結束】
21
【題目】已知函數(shù),
(Ⅰ)當時,求函數(shù)
的單調(diào)遞減區(qū)間;
(Ⅱ)若時,關于
的不等式
恒成立,求實數(shù)
的取值范圍;
(Ⅲ)若數(shù)列滿足
,
,記
的前
項和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線C1的參數(shù)方程為(t為參數(shù)),以O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2(1+sin2θ)=2,點M的極坐標為(
,
).
(1)求點M的直角坐標和C2的直角坐標方程;
(2)已知直線C1與曲線C2相交于A,B兩點,設線段AB的中點為N,求|MN|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為的等差數(shù)列
的首項為1,前
項和為
,且數(shù)列
是等差數(shù)列.
(1)求數(shù)列的通項公式;
(2)設,問:
均為正整數(shù),且
能否成等比數(shù)列?若能,求出所有的
和
的值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com