日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓C:(x-3)2+(y-4)2=4,
          (1)直線l1過定點A (1,0).若l1與圓C相切,求l1的方程;
          (2)直線l2過B(2,3)與圓C相交于P,Q兩點,求線段PQ的中點M的軌跡方程.
          分析:(1)通過切線的斜率垂直與不存在分別推出直線方程,利用圓心到直線的距離公式等于半徑即可求解l1的方程;
          (2)設(shè)出線段PQ的中點M的坐標,利用圓的圓心與弦垂直,通過斜率乘積為-1,即可求出M的軌跡方程.
          解答:解:(1)①若直線l1的斜率不存在,則直線方程為x=1,符合題意;
          ②若直線l1斜率存在,設(shè)直線l1的方程為y=k(x-1),即kx-y-k=0.
          由題意知,圓心(3,4)到已知直線l1的距離等于半徑2,
          即:
          |3k-4-k|
          k2+1
          =2
          ,解之得 k=
          3
          4

          所求直線l1的方程為x=1或3x-4y-3=0.
          (2)設(shè)M(x,y)由題意可知MC⊥MB,
          因為C(3,4),B(2,3)
          y-4
          x-3
          y-3
          x-2
          =-1

          整理得(x-
          5
          2
          2+(y-
          7
          2
          2=
          1
          2
          ,
          線段PQ的中點M的軌跡方程:(x-
          5
          2
          2+(y-
          7
          2
          2=
          1
          2
          點評:本題考查直線與圓相切的直線方程的求法,注意斜率是否存在,點到直線的距離公式的應(yīng)用,直線的垂直關(guān)系的應(yīng)用,考查計算能力,轉(zhuǎn)化思想.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:(x-3)2+(y-4)2=4,直線l1過定點A(1,0).
          (Ⅰ)若l1與圓相切,求l1的方程;
          (Ⅱ)若l1與圓相交于P,Q兩點,線段PQ的中點為M,又l1與l2:x+2y+2=0的交點為N,求證:AM•AN為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知圓C:(x-3)2+(y-4)2=4,
          (Ⅰ)若直線l1過定點A(1,0),且與圓C相切,求l1的方程;
          (Ⅱ)若圓D的半徑為3,圓心在直線l2:x+y-2=0上,且與圓C外切,求圓D的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:(x-3)2+(y-4)2=4,
          (Ⅰ)若a=y-x,求a的最大值和最小值;
          (Ⅱ)若圓D的半徑為3,圓心在直線L:x+y-2=0上,且與圓C外切,求圓D的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:(x+3)2+(y-4)2=4.
          (1)若直線l1過點A(-1,0),且與圓C相切,求直線l1的方程;
          (2)若圓D的半徑為4,圓心D在直線l2:2x+y-2=0上,且與圓C內(nèi)切,求圓D的方程.

          查看答案和解析>>

          同步練習冊答案