日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓C:(x-3)2+(y-4)2=4,
          (Ⅰ)若a=y-x,求a的最大值和最小值;
          (Ⅱ)若圓D的半徑為3,圓心在直線L:x+y-2=0上,且與圓C外切,求圓D的方程.
          分析:(Ⅰ)根據(jù)圓C方程設(shè)出圓的參數(shù)方程,表示出x與y,代入a=y-x中,整理后化為一個角的正弦函數(shù),根據(jù)正弦函數(shù)的值域即可確定出a的最大值和最小值;
          (Ⅱ)根據(jù)圓心在直線L:x+y-2=0上,設(shè)出圓心D坐標,而圓D與圓C外切,得到圓心距CD等于兩半徑之和,利用兩點間的距離公式列出關(guān)于a的方程,求出方程的解得到a的值,確定出圓心D坐標,即可確定出圓D的方程.
          解答:解:(Ⅰ)令
          x=3+2cosθ
          y=4+2sinθ
          ,
          ∴a=y-x=4+2sinθ-3-2cosθ=2sinθ-2cosθ+1=2
          2
          sin(θ-
          π
          4
          )+1,
          ∵-1≤sin(θ-
          π
          4
          )≤1,即-2
          2
          ≤sin(θ-
          π
          4
          )≤2
          2
          ,
          則a的最大值為2
          2
          +1,最小值為1-2
          2
          ;
          (Ⅱ)依題意設(shè)D(a,2-a),
          ∵已知圓心C(3,4),r=2,且兩圓相切,
          ∴CD=5,即
          (a-3)2+(2-a-4)2
          =5,
          整理得:a2-a-6=0,即(a+2)(a-3)=0,
          解得:a=-2或a=3,
          ∴D(3,-1)或D(-2,4),
          則所求圓方程為(x-3)2+(y+1)2=9或(x+2)2+(y-4)2=9.
          點評:此題考查了直線與圓的位置關(guān)系,圓的標準方程,以及圓的切線方程,弄清題意是解本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:(x-3)2+(y-4)2=4,直線l1過定點A(1,0).
          (Ⅰ)若l1與圓相切,求l1的方程;
          (Ⅱ)若l1與圓相交于P,Q兩點,線段PQ的中點為M,又l1與l2:x+2y+2=0的交點為N,求證:AM•AN為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知圓C:(x-3)2+(y-4)2=4,
          (Ⅰ)若直線l1過定點A(1,0),且與圓C相切,求l1的方程;
          (Ⅱ)若圓D的半徑為3,圓心在直線l2:x+y-2=0上,且與圓C外切,求圓D的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:(x-3)2+(y-4)2=4,
          (1)直線l1過定點A (1,0).若l1與圓C相切,求l1的方程;
          (2)直線l2過B(2,3)與圓C相交于P,Q兩點,求線段PQ的中點M的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:(x+3)2+(y-4)2=4.
          (1)若直線l1過點A(-1,0),且與圓C相切,求直線l1的方程;
          (2)若圓D的半徑為4,圓心D在直線l2:2x+y-2=0上,且與圓C內(nèi)切,求圓D的方程.

          查看答案和解析>>

          同步練習(xí)冊答案