日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}前n項(xiàng)和Sn=2n2-3n,數(shù)列{bn}是各項(xiàng)為正的等比數(shù)列,滿足a1=-b1,b3(a2-a1)=b1
          (1)求數(shù)列{an},{bn}的通項(xiàng)公式;
          (2)記cn=an•bn,求cn的最大值.
          【答案】分析:(1)當(dāng)n=1時(shí),a1=s1=-1,當(dāng)n≥2時(shí),利用an=sn-sn-1得到an的通項(xiàng)公式,把n=1代入也滿足,得到即可;因?yàn)閿?shù)列{bn}是各項(xiàng)為正的等比數(shù)列,可設(shè)公比為q且b1=-a1=1,則根據(jù)b3(a2-a1)=b1即可解出q,然后利用等比數(shù)列的通項(xiàng)公式得到bn的通項(xiàng);
          (2)把a(bǔ)n和bn的通項(xiàng)公式代入到cn=an•bn中,由cn≥cn-1且cn≥cn+1列出不等式求出解集中的正整數(shù)解得到cn的最大值
          解答:解:(1)∵,

          即an=4n-5(n∈N*)由已知b1=1,b1q2(a2-a1)=b1
          ∵bn>0,∴,∴
          (2)得n=3.即c3最大,最大值為
          點(diǎn)評:考查學(xué)生會利用an=sn-sn-1得到an的通項(xiàng)公式,靈活運(yùn)用等比數(shù)列的通項(xiàng)公式,會利用不等數(shù)求數(shù)列和的最大值.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}前 n項(xiàng)和為Sn,且Sn=n2,
          (1)求{an}的通項(xiàng)公式    
          (2)設(shè) bn=
          1anan+1
          ,求數(shù)列{bn}的前 n項(xiàng) 和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}前n項(xiàng)和Sn和通項(xiàng)an滿足Sn=-
          1
          2
          (an-1)

          (1)求數(shù)列{an}的通項(xiàng)公式; 
          (2)試證明Sn
          1
          2

          (3)設(shè)函數(shù)f(x)=log
          1
          3
          x
          ,bn=f(a1)+f(a2)+…+f(an),求
          1
          b1
          +
          1
          b2
          +…+
          1
          b99
          的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}前n項(xiàng)和Sn=2n-1,則數(shù)列{an}的奇數(shù)項(xiàng)的前n項(xiàng)的和是
          4n-1
          3
          4n-1
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}前n項(xiàng)和Sn=2an+2n,
          (Ⅰ)證明數(shù)列{
          an
          2n-1
          }
          是等差數(shù)列,并求{an}的通項(xiàng)公式;
          (Ⅱ)若bn=
          (n-2011)an
          n+1
          ,求數(shù)列{bn}是否存在最大值項(xiàng),若存在,說明是第幾項(xiàng),若不存在,請說明理由;
          (Ⅲ)設(shè)Tn=|S1|+|S2|+|S3|+…+|Sn|,試比較
          Tn+Sn
          2
          2-n
          1+n
          an
          的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}前n項(xiàng)和Sn=n2+2n,設(shè)bn=
          1anan+1

          (1)試求an;
          (2)求數(shù)列{bn}的前n項(xiàng)和Tn

          查看答案和解析>>

          同步練習(xí)冊答案