日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,且,,平面平面ABC.

          1)求證:平面平面

          2)若,,求幾何體的體積.

          【答案】1)證明見解析(2

          【解析】

          1)取BC的中點(diǎn)E,連接,可證明平面,根據(jù)可證明四邊形為平行四邊形,從而可證平面,進(jìn)而證明平面平面.2)將所求幾何體分割為四棱錐和直三棱柱兩部分,通過四棱錐和棱柱的體積分別計(jì)算求和可得幾何體的體積.

          解:(1)取BC的中點(diǎn)E,連接,∵,∴

          是正方形,∴,又平面平面ABC,∴平面ABC,

          又∵平面ABC,∴

          又∵,平面,,∴平面

          ,∴四邊形為平行四邊形,∴,

          ∴四邊形為平行四邊形

          ,∴平面

          平面,∴平面平面

          2)由(1)知所求幾何體為四棱錐和直三棱柱的組合體

          ,,平面,∴平面,

          ∴四棱錐的體積

          直三棱柱的體積

          ∴所求幾何體的體積

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,越來越多的人習(xí)慣用手機(jī)應(yīng)用程序(簡稱app)獲取新聞資訊.為了解用戶對某款新聞?lì)?/span>app的滿意度,隨機(jī)調(diào)查了300名用戶,調(diào)研結(jié)果如表:(單位:人)

          青年人

          中年人

          老年人

          滿意

          60

          70

          x

          一般

          55

          25

          y

          不滿意

          25

          5

          10

          1)從所有參與調(diào)研的人中隨機(jī)選取1人,估計(jì)此人“不滿意”的概率;

          2)從參與調(diào)研的青年人和中年人中各隨機(jī)選取1人,估計(jì)恰有1人“滿意”的概率;

          3)現(xiàn)需從參與調(diào)研的老年人中選擇6人作進(jìn)一步訪談,若在“滿意”、“一般”、“不滿意”的老年人中各取2人,這種抽樣是否合理?說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)|xm||2x1|.

          (1)當(dāng)m=-1時(shí),求不等式f(x)≤2的解集;

          (2)f(x)≤|2x1|的解集包含,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系xOy中,曲線E的參數(shù)方程為為參數(shù)),以O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程分別為,交曲線E于點(diǎn)A,B,交曲線E于點(diǎn)CD.

          1)求曲線E的普通方程及極坐標(biāo)方程;

          2)求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】羽毛球比賽中,首局比賽由裁判員采用拋球的方法決定誰先發(fā)球,在每回合爭奪中,贏方得1分且獲得發(fā)球權(quán).每一局中,獲勝規(guī)則如下:①率先得到21分的一方贏得該局比賽;②如果雙方得分出現(xiàn),需要領(lǐng)先對方2分才算該局獲勝;③如果雙方得分出現(xiàn),先取得30分的一方該局獲勝.現(xiàn)甲、乙兩名運(yùn)動(dòng)員進(jìn)行對抗賽,在每回合爭奪中,若甲發(fā)球時(shí),甲得分的概率為;乙發(fā)球時(shí),甲得分的概率為

          (Ⅰ)若,記甲以贏一局的概率為,試比較的大;

          (Ⅱ)根據(jù)對以往甲、乙兩名運(yùn)動(dòng)員的比賽進(jìn)行數(shù)據(jù)分析,得到如下列聯(lián)表部分?jǐn)?shù)據(jù).若不考慮其它因素對比賽的影響,并以表中兩人發(fā)球時(shí)甲得分的頻率作為的值.

          甲得分

          乙得分

          總計(jì)

          甲發(fā)球

          50

          100

          乙發(fā)球

          60

          90

          總計(jì)

          190

          ①完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為比賽得分與接、發(fā)球有關(guān)?

          ②已知在某局比中,雙方戰(zhàn)成,且輪到乙發(fā)球,記雙方再戰(zhàn)回合此局比賽結(jié)束,求的分布列與期望.

          參考公式:,其中

          臨界值表供參考:

          0.15

          0.10

          0.05

          0.010

          0.001

          2.072

          2.706

          3.841

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若上存在極大值,求的取值范圍;

          2)若軸是曲線的一條切線,證明:當(dāng)時(shí),.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,底面為直角梯形,其中,的中點(diǎn),交于點(diǎn),且平面

          1)證明:平面平面

          2)求直線與平面所成角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的AB處設(shè)置觀景臺(tái),記BC=aAC=b,AB=c(單位:百米)

          1)若ab,c成等差數(shù)列,且公差為4,求b的值;

          2)已知AB=12,記∠ABC,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若的最大值為,求的值;

          2)若存在實(shí)數(shù),使得,求證:

          查看答案和解析>>

          同步練習(xí)冊答案