日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•包頭一模)曲線y=x2+bx+c在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,
          π
          4
          ]
          ,則點(diǎn)P到該曲線對稱軸距離的取值范圍為( 。
          分析:先由導(dǎo)數(shù)的幾何意義,得到x0的范圍,再求出其到對稱軸的范圍.
          解答:解:∵過P(x0,f(x0))的切線的傾斜角的取值范圍是[0,
          π
          4
          ]

          ∴f′(x0)=2x0+b∈[0,1],x0∈[-
          b
          2
          ,
          1
          2
          -
          b
          2
          ]
          ∴P到曲線y=f(x)對稱軸x=-
          1
          2
          b的距離d=x0-(-
          1
          2
          b )=x0+
          1
          2
          b,
          ∵x0∈[-
          b
          2
          ,
          1
          2
          -
          b
          2
          ]
          ∴d=x0+
          1
          2
          b∈[0,
          1
          2
          ]

          故選B.
          點(diǎn)評:本題中是對導(dǎo)數(shù)的幾何意義的考查,計(jì)算時,對范圍的換算要細(xì)心.考查計(jì)算能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•包頭一模)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2,AB=1.
          (Ⅰ)求四棱錐P-ABCD的體積V;
          (Ⅱ)若F為PC的中點(diǎn),求證:平面PAC⊥平面AEF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•包頭一模)下列命題錯誤的是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•包頭一模)已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)與拋物線y2=8x有 一個公共的焦點(diǎn)F,且兩曲線的一個交點(diǎn)為P,若|PF|=5,則雙曲線方程為
          x2-
          y2
          3
          =1
          x2-
          y2
          3
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•包頭一模)函數(shù)f(x)=sin(ωx+?)(其中|?|<
          π
          2
          )的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點(diǎn)(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•包頭一模)在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 
          x=acosφ
          y=bsinφ
          (a>b>0,?為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線C1上的點(diǎn)M(1,
          3
          2
          )對應(yīng)的參數(shù)φ=
          π
          3
          ,曲線C2過點(diǎn)D(1,
          π
          3
          ).
          (Ⅰ)求曲線C1,C2的直角坐標(biāo)方程;
          (Ⅱ)若點(diǎn)A(ρ 1,θ),B(ρ 2,θ+
          π
          2
          ) 在曲線C1上,求
          1
          ρ
          2
          1
          +
          1
          ρ
          2
          2
          的值.

          查看答案和解析>>

          同步練習(xí)冊答案