日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•包頭一模)下列命題錯(cuò)誤的是( 。
          分析:A.我們知道:命題“若p,則q”的逆否命題是“若¬q,則¬p”,同時(shí)注意“x=y=0”的否定是“x,y中至少有一個(gè)不為0”,據(jù)此可以判斷出A的真假.
          B.依據(jù)“命題:?x0∈R,結(jié)論p成立”,則¬p為:“?x∈R,結(jié)論p的反面成立”,可以判斷出B的真假.
          C.由于sinA-sinB=2cos
          A+B
          2
          sin
          A-B
          2
          ,因此在△ABC中,sinA>sinB?sin
          A-B
          2
          >0?A>B.由此可以判斷出C是否正確.
          D.由向量
          a
          b
          =|
          a
          ||
          b
          |cos<
          a
          ,
          b
          ><0
          ,可得
          a
          b
          的夾角
          π
          2
          a
          b
          >≤π
          ,可以判斷出D是否正確.
          解答:解:A.依據(jù)命題“若p,則q”的逆否命題是“若¬q,則¬p”,可知:命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個(gè)不為0,則x2+y2≠0”.可判斷出A正確.
          B.依據(jù)命題的否定法則:“命題:?x0∈R,
          x
          2
          0
          -x0+1≤0”的否定應(yīng)是“?x∈R,x2-x+1>0”,故B是真命題.
          C.由于sinA-sinB=2cos
          A+B
          2
          sin
          A-B
          2
          ,在△ABC中,∵0<A+B<π,∴0
          A+B
          2
          π
          2
          ,∴0<cos
          A+B
          2
          <1
          ,
          又0<B<A<π,∴0<A-B<π,∴0<
          A-B
          2
          π
          2
          ,∴0<sin
          A-B
          2
          <1

          據(jù)以上可知:在△ABC中,sinA>sinB?sin
          A-B
          2
          >0?A>B.故在△ABC中,sinA>sinB是A>B的充要條件.
          因此C正確.
          D.由向量
          a
          b
          =|
          a
          ||
          b
          |cos<
          a
          ,
          b
          ><0
          ,∴cos<
          a
          ,
          b
          ><0
          ,∴
          a
          b
          的夾角
          π
          2
          a
          b
          >≤π
          ,
          ∴向量
          a
          b
          的夾角不一定是鈍角,亦可以為平角π,∴可以判斷出D是錯(cuò)誤的.
          故答案是D.
          點(diǎn)評(píng):本題綜合考查了四種命題之間的關(guān)系、命題的否定、三角形中的角大小與其相應(yīng)的正弦值之間的大小關(guān)系、向量的夾角,解決問(wèn)題的關(guān)鍵是熟練掌握其有關(guān)基礎(chǔ)知識(shí).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•包頭一模)在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點(diǎn),PA=2,AB=1.
          (Ⅰ)求四棱錐P-ABCD的體積V;
          (Ⅱ)若F為PC的中點(diǎn),求證:平面PAC⊥平面AEF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•包頭一模)已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)與拋物線y2=8x有 一個(gè)公共的焦點(diǎn)F,且兩曲線的一個(gè)交點(diǎn)為P,若|PF|=5,則雙曲線方程為
          x2-
          y2
          3
          =1
          x2-
          y2
          3
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•包頭一模)函數(shù)f(x)=sin(ωx+?)(其中|?|<
          π
          2
          )的圖象如圖所示,為了得到y(tǒng)=sinωx的圖象,只需把y=f(x)的圖象上所有點(diǎn)( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•包頭一模)在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為 
          x=acosφ
          y=bsinφ
          (a>b>0,?為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.已知曲線C1上的點(diǎn)M(1,
          3
          2
          )對(duì)應(yīng)的參數(shù)φ=
          π
          3
          ,曲線C2過(guò)點(diǎn)D(1,
          π
          3
          ).
          (Ⅰ)求曲線C1,C2的直角坐標(biāo)方程;
          (Ⅱ)若點(diǎn)A(ρ 1,θ),B(ρ 2,θ+
          π
          2
          ) 在曲線C1上,求
          1
          ρ
          2
          1
          +
          1
          ρ
          2
          2
          的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案