日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)在x=2處連續(xù),則常數(shù)的值是    (    )

          (A)2         (B)3           (C)4        (D)5

           

          【答案】

          B

          【解析】

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
          (Ⅰ)  若函數(shù)y=f(x)的圖象在點(1,2)處的切線的斜率等于1,求函數(shù)y=f(x)的解析式;
          (Ⅱ)若x∈[0,1],則函數(shù)y=f(x)的圖象上的任意一點的切線的斜率為k,試討論|k|≤1成立的充要條件.
          (Ⅲ)若函數(shù)y=f(x)的圖象上任意不同的兩點的連線的斜率小于1,求證:-
          3
          <a<
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=-x3+ax2+b(a,b∈R).
          (I)當a>0時,求函數(shù)y=f(x)的極值;
          (II)若函數(shù)y=f(x)的圖象上任意不同的兩點連線的斜率都小于2,求證:-
          6
          <a<
          6

          (III)對任意x0∈[0,1],y=f(x)的圖象在x=x0處的切線的斜率為k,求證:1≤a≤
          3
          是|k|≤1成立的充要條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•寧德模擬)已知函數(shù)f(x)=x3+bx+c在點(1,f(1))處的切線方程為2x-y-2=0.
          (Ⅰ)求實數(shù)b,c的值;
          (Ⅱ)求函數(shù)g(x)=[f(x)-x3]ex在區(qū)間[t,t+1]的最大值;
          (Ⅲ)設(shè)h(x)=f(x)+6lnx,問是否存在實數(shù)m,使得函數(shù)h(x)的圖象上任意不同的兩點A(x1,h(x1)),B(x2,h(x2))連線的斜率都大于m?若存在,求出m的取值范圍;若不存在,說明理由.(e為自然對數(shù)的底數(shù),e≈2.71828…)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建省福州市高三畢業(yè)班質(zhì)檢文科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù).其中.

          1若曲線yf(x)y=g(x)x1處的切線相互平行,兩平行直線間的距離;

          2)若f(x)≤g(x)1對任意x>0恒成立,求實數(shù)的值;

          3)當<0時,對于函數(shù)h(x)=f(x)g(x)+1,記在h(x)圖象上任取兩點A、B連線的斜率為,,的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:0108 模擬題 題型:解答題

          已知f(x)=x3-2x2+cx+4,g(x)=ex-e2-x+f(x),
          (1)若f(x)在x=1+處取得極值,試求c的值和f(x)的單調(diào)增區(qū)間;
          (2)如圖所示:若函數(shù)y=f(x)的圖象在[a,b]連續(xù)光滑,試猜想拉格朗日中值定理:即一定存在c∈(a,b)使得f′(c)=,利用這條性質(zhì)證明:函數(shù)y=g(x)圖象上任意兩點的連線斜率不小于2e-4。

          查看答案和解析>>

          同步練習(xí)冊答案