日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在△ABC中,AC=2,BC=1,
          (1)求AB的值;
          (2)求sin(2A+C)的值.

          【答案】分析:(1)利用余弦定理把AC=2,BC=1,.即可求得AB.
          (2)由cosC求得sinC,在由正弦定理求得sinA,進(jìn)而根據(jù)同角三角函數(shù)的基本關(guān)系求得cosA,用倍角公式求得sin2A和cos2A,進(jìn)而利用兩角和公式求得答案.
          解答:解:(1)由余弦定理,AB2=AC2+BC2-2AC•BC•cosC=
          那么,
          (2)解:由,且0<C<π,
          .由正弦定理,,
          解得
          所以,
          由倍角公式,


          點(diǎn)評(píng):本題主要考查了正弦定理和余弦定理的應(yīng)用.應(yīng)熟練掌握這兩個(gè)的定理的公式和變形公式.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點(diǎn)E,以BE為直徑的⊙O恰與AC相切于點(diǎn)D,若AE=2cm,
          AD=4cm.
          (1)求:⊙O的直徑BE的長(zhǎng);
          (2)計(jì)算:△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點(diǎn),且AB=AD,2AB=
          3
          BD,BC=2BD,則sinC的值為( 。
          A、
          3
          3
          B、
          3
          6
          C、
          6
          3
          D、
          6
          6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在△ABC中,設(shè)
          AB
          =a
          ,
          AC
          =b
          ,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
          (Ⅰ)若
          AP
          =λa+μb
          ,求λ和μ的值;
          (Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
          S平行四邊形ANPM
          S△ABC

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在△ABC中,∠B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3.
          (1)求∠ADC的大;
          (2)求AB的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在△ABC中,已知
          BD
          =2
          DC
          ,則
          AD
          =( 。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案