日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點E,以BE為直徑的⊙O恰與AC相切于點D,若AE=2cm,
          AD=4cm.
          (1)求:⊙O的直徑BE的長;
          (2)計算:△ABC的面積.
          分析:(1)由切割線定理知,AD2=AE•AB=AE(AE+BE),由此可求得BE的長;
          (2)由切線長定理知,CD=BC,由勾股定理知,AB2+BC2=AC2即82+BC2=(4+BC)2,解得BC=6,則可由直角三角形的面積公式求得△ABC的面積.
          解答:解:(1)∵AD是切線,AEB是圓的割線,
          ∴AD2=AE•AB=AE(AE+BE),解得BE=6cm;
          (2)∵∠B=90°,
          ∴CB也是圓的切線,
          ∵CD也是圓的切線,則有CD=BC,
          在Rt△ABC中,由勾股定理知,AB2+BC2=AC2即82+BC2=(4+BC)2,解得BC=6cm,
          ∴S△ABC=
          1
          2
          AB•BC=24cm2
          點評:本題利用了切割線定理、切線長定理、勾股定理、切線的判定和性質(zhì)、直角三角形的面積公式求解.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點,且AB=AD,2AB=
          3
          BD,BC=2BD,則sinC的值為(  )
          A、
          3
          3
          B、
          3
          6
          C、
          6
          3
          D、
          6
          6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在△ABC中,設(shè)
          AB
          =a
          ,
          AC
          =b
          ,AP的中點為Q,BQ的中點為R,CR的中點恰為P.
          (Ⅰ)若
          AP
          =λa+μb
          ,求λ和μ的值;
          (Ⅱ)以AB,AC為鄰邊,AP為對角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
          S平行四邊形ANPM
          S△ABC

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在△ABC中,∠B=45°,D是BC邊上的一點,AD=5,AC=7,DC=3.
          (1)求∠ADC的大;
          (2)求AB的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在△ABC中,已知
          BD
          =2
          DC
          ,則
          AD
          =( 。

          查看答案和解析>>

          同步練習(xí)冊答案