【題目】已知函數,其中
為常數,
(1)若函數為奇函數,求
的值;
(2)若函數在
上有意義,求實數
的取值范圍。
【答案】(1) (2)
【解析】試題分析:因為為奇函數,所以
對定義域內的任意
恒成立,即
對定義域內的任意
恒成立,故
,即
對定義域內的任意
恒成立,故
得出
檢驗是否符合題意即可(2)若
在
內恒有意義,則當
時,有
恒成立,因為
,所以
,從而
在
上恒成立,構造
,當
時,不合題意 , 當
時,同時限制端點即可.
試題解析:
(1)因為為奇函數,所以
對定義域內的任意
恒成立,
即對定義域內的任意
恒成立,
故,即
對定義域內的任意
恒成立,
故,即
當時,
為奇函數,滿足條件;
當時,
無意義,故不成立。
綜上,
(2)若在
內恒有意義,則當
時,有
恒成立,
因為,所以
,從而
在
上恒成立,
令,則
當時,不合題意
當時,
,解得
,
所以,實數的取值范圍是
科目:高中數學 來源: 題型:
【題目】某車間20名工人年齡數據如下表:
年齡(歲) | 19 | 24 | 26 | 30 | 34 | 35 | 40 | 合計 |
工人數(人) | 1 | 3 | 3 | 5 | 4 | 3 | 1 | 20 |
(1)求這20名工人年齡的眾數與平均數;
(2)以十位數為莖,個位數為葉,作出這20名工人年齡的莖葉圖;
(3)從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】電視連續(xù)劇《人民的名義》自2017年3月28日在湖南衛(wèi)視開播以來,引發(fā)各方關注,收視率、點擊率均占據各大排行榜首位.我們用簡單隨機抽樣的方法對這部電視劇的觀看情況進行抽樣調查,共調查了600人,得到結果如下:其中圖1是非常喜歡《人民的名義》這部電視劇的觀眾年齡的頻率分布直方圖;表1是不同年齡段的觀眾選擇不同觀看方式的人數.
觀看方式 年齡(歲) | 電視 | 網絡 |
150 | 250 | |
120 | 80 |
求:(I)假設同一組中的每個數據用該組區(qū)間的中點值代替,求非常喜歡《人民的名義》這部電視劇的觀眾的平均年齡;
(II)根據表1,通過計算說明我們是否有99%的把握認為觀看該劇的方式與年齡有關?
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有甲、乙兩個班級進行數學考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統計成績后,得到如下的2×2列聯表.已知從全部210人中隨機抽取1人為優(yōu)秀的概率為.
(1)請完成上面的2×2列聯表,并判斷若按99%的可靠性要求,能否認為“成績與班級有關”;
(2)從全部210人中有放回地抽取3次,每次抽取1人,記被抽取的3人中的優(yōu)秀人數為ξ,若每次抽取的結果是相互獨立的,求ξ的分布列及數學期望E(ξ).
P(K2≥k0) | 0.05 | 0.01 |
k0 | 3.841 | 6.635 |
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(Ⅰ)當0≤x≤200時,求函數v(x)的表達式;
(Ⅱ)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線C的參數方程為
(其中
為參數),以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系中,直線
的極坐標方程為
.
(Ⅰ)求C的普通方程和直線的傾斜角;
(Ⅱ)設點(0,2),
和
交于
兩點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天水市第一次聯考后,某校對甲、乙兩個文科班的數學考試成績進行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統計成績后,
得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為
.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯表;
(2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com