日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,已知兩個(gè)正方形ABCD和DCEF不在同一平面內(nèi),M,N分別為AB,DF的中點(diǎn).

          (1)若CD=2,平面ABCD⊥平面DCEF,求MN的長(zhǎng);
          (2)用反證法證明:直線ME與BN是兩條異面直線.

          (1)  (2)見(jiàn)解析

          解析(1)解:取CD的中點(diǎn)G,
          連結(jié)MG,NG.

          因?yàn)樗倪呅蜛BCD,DCEF為正方形,
          且邊長(zhǎng)為2,
          所以MG⊥CD,MG=2,NG=.
          因?yàn)槠矫鍭BCD⊥平面DCEF,
          所以MG⊥平面DCEF.可得MG⊥NG.
          所以MN==.
          (2)證明:假設(shè)直線ME與BN共面,
          則AB?平面MBEN,且平面MBEN與平面DCEF交于EN.
          由題意知兩正方形不共面,故AB?平面DCEF.
          又AB∥CD,所以AB∥平面DCEF,
          而EN為平面MBEN與平面DCEF的交線,
          所以AB∥EN.
          又AB∥CD∥EF,所以EN∥EF,
          這與EN∩EF=E矛盾,故假設(shè)不成立.
          所以ME與BN不共面,它們是異面直線.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知圓錐母線長(zhǎng)為6,底面圓半徑長(zhǎng)為4,點(diǎn)是母線的中點(diǎn),是底面圓的直徑,底面半徑與母線所成的角的大小等于

          (1)當(dāng)時(shí),求異面直線所成的角;
          (2)當(dāng)三棱錐的體積最大時(shí),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖一,平面四邊形關(guān)于直線對(duì)稱,.把沿折起(如圖二),使二面角的余弦值等于.對(duì)于圖二,完成以下各小題:

          (1)求兩點(diǎn)間的距離;
          (2)證明:平面;
          (3)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在直三棱柱中,,,求:

          (1)異面直線所成角的余弦值;
          (2)直線到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分別在線段上,B1E=3EC1,AC=BC=CC1=4.

          (1)求證:BC⊥AC1;
          (2)試探究:在AC上是否存在點(diǎn)F,滿足EF//平面A1ABB1,若存在,請(qǐng)指出點(diǎn)F的位置,并給出證明;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖五面體中,四邊形ABCD是矩形,DA⊥平面ABEF,AB∥EF,AB=EF=2,AF=BE=2,P、Q、M分別為AE、BD、EF的中點(diǎn).

          (1)求證:PQ∥平面BCE;
          (2)求證:AM⊥平面ADF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在直四棱柱ABCDA1B1C1D1中,底面ABCD是菱形.求證:平面B1AC∥平面DC1A1.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,AB、CD均為圓O的直徑,CE⊥圓O所在的平面,BF∥CE.求證:

          (1)平面BCEF⊥平面ACE;
          (2)直線DF∥平面ACE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖1,在直角梯形ABCD中,ADBC,∠ADC=90°,BABC.把△BAC沿AC折起到△PAC的位置,使得點(diǎn)P在平面ADC上的正投影O恰好落在線段AC上,如圖2所示.點(diǎn)E、F分別為棱PC,CD的中點(diǎn).
           
          (1)求證:平面OEF∥平面APD;
          (2)求證:CD⊥平面POF;
          (3)在棱PC上是否存在一點(diǎn)M,使得MPO,CF四點(diǎn)距離相等?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案