日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2009•盧灣區(qū)二模)已知數(shù)列{an}的前n項(xiàng)和為An,且對任意正整數(shù)n,都滿足:tan-1=An,其中t>1為實(shí)數(shù).
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)若bn為楊輝三角第n行中所有數(shù)的和,即bn=Cn0+Cn1+…+Cnn,Bn為楊輝三角前n行中所有數(shù)的和,亦即為數(shù)列{bn}的前n項(xiàng)和,求
          lim
          n→∞
          An
          Bn
          的值.
          分析:(1)涉及通項(xiàng)及前n項(xiàng)和,通常是再寫一式,兩式相減,進(jìn)而可得相鄰項(xiàng)之間的關(guān)系,從而利用數(shù)列為等比數(shù)列,可求數(shù)列{an}的通項(xiàng)公式;
          (2)分別求出前n項(xiàng)和為An,Bn,再求極限,注意分類討論.
          解答:解:(1)由已知tan+1-1=An+1,tan-1=An,相減得tan+1-tan=an+1,由t-1>0得
          an+1
          an
          =
          t
          t-1
          ,又ta1-1=a1,得a1=
          1
          t-1
          ,故數(shù)列{an}是一個(gè)以a1=
          1
          t-1
          為首項(xiàng),以q=
          t
          t-1
          為公比的等比數(shù)列.(4分)
          從而an=
          1
          t-1
          •(
          t
          t-1
          )n-1=
          1
          t
          (
          t
          t-1
          )n
          n∈N*;                   (6分)
          (2)An=tan-1=(
          t
          t-1
          )n-1
          ,(7分)
          又bn=Cn0+Cn1+…+Cnn=2n,故Bn=2(2n-1),(11分)
          于是
          lim
          n→∞
          An
          Bn
          =
          lim
          n→∞
          (
          t
          t-1
          )
          n
          -1
          2n+1-2
          ,
          當(dāng)
          t
          t-1
          =2
          ,即t=2時(shí),
          lim
          n→∞
          An
          Bn
          =
          1
          2
          ,
          當(dāng)
          t
          t-1
          <2
          ,即t>2時(shí),
          lim
          n→∞
          An
          Bn
          =0
          ,
          當(dāng)
          t
          t-1
          >2
          ,即1<t<2時(shí),
          lim
          n→∞
          An
          Bn
          不存在.(14分)
          點(diǎn)評:本題的考點(diǎn)是數(shù)列的極限,主要考查等比數(shù)列的通項(xiàng),考查數(shù)列的極限,關(guān)鍵是掌握涉及通項(xiàng)及前n項(xiàng)和,通常是再寫一式,兩式相減的方法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•盧灣區(qū)二模)設(shè)數(shù)列{an}的前n項(xiàng)之和為Sn,若Sn=
          1
          12
          (an+3)2
          (n∈N*),則{an}(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•盧灣區(qū)二模)在平面直角坐標(biāo)系中,若O為坐標(biāo)原點(diǎn),則A、B、C三點(diǎn)在同一直線上的充要條件為存在惟一的實(shí)數(shù)λ,使得
          OC
          =λ•
          OA
          +(1-λ)•
          OB
          成立,此時(shí)稱實(shí)數(shù)λ為“向量
          OC
          關(guān)于
          OA
          OB
          的終點(diǎn)共線分解系數(shù)”.若已知P1(3,1)、P2(-1,3),且向量
          OP3
          是直線l:x-y+10=0的法向量,則“向量
          OP3
          關(guān)于
          OP1
          OP2
          的終點(diǎn)共線分解系數(shù)”為
          -1
          -1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•盧灣區(qū)二模)在△ABC中,設(shè)角A、B、C所對的邊分別是a、b、c,若b2+c2=a2+
          2
          bc
          ,且a=
          2
          b
          ,則∠C=
          12
          12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•盧灣區(qū)二模)二項(xiàng)式(x+
          1
          x
          )6
          的展開式中的常數(shù)項(xiàng)為
          15
          15

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•盧灣區(qū)二模)若函數(shù)f(x)=2sin2x-2
          3
          sinxsin(x-
          π
          2
          )
          能使得不等式|f(x)-m|<2在區(qū)間(0, 
          3
          )
          上恒成立,則實(shí)數(shù)m的取值范圍是
          (1,2]
          (1,2]

          查看答案和解析>>

          同步練習(xí)冊答案