【題目】以橢圓:
的中心
為圓心,
為半徑的圓稱為該橢圓的“準(zhǔn)圓”.設(shè)橢圓
的左頂點(diǎn)為
,左焦點(diǎn)為
,上頂點(diǎn)為
,且滿足
,
.
(1)求橢圓及其“準(zhǔn)圓”的方程;
(2)若橢圓的“準(zhǔn)圓”的一條弦
與橢圓
交于
、
兩點(diǎn),試證明:當(dāng)
時,弦
的長為定值.
【答案】(1),
;(2)證明見解析
【解析】
(1)根據(jù)求得
,再結(jié)合
可得
以及
,即可解出
,從而求出橢圓
及其“準(zhǔn)圓”的方程;
(2)先由弦軸時,求出原點(diǎn)
到弦
的距離
,然后再證明弦
不垂直于
軸時,原點(diǎn)
到弦
的距離也為
,根據(jù)弦長公式即可得到
,即弦
的長為定值.
(1)設(shè)橢圓的左焦點(diǎn)
,
由得
,
又,即
,
且,所以
,
則所求的橢圓的方程為
,
橢圓的“準(zhǔn)圓”方程為
.
(2)證明:①當(dāng)弦軸時,交點(diǎn)
關(guān)于
軸對稱,
又,則
,
可設(shè),
得
,
此時原點(diǎn)到弦
的距離
;
②當(dāng)弦不垂直于
軸時,設(shè)直線
的方程為
,
且與橢圓的交點(diǎn)
,
聯(lián)列方程組,
代入消元得:,
由,
可得,
由得
,
即,所以
,
此時成立,
則原點(diǎn)到弦
的距離
,
綜上得,原點(diǎn)到弦
的距離為
,則
,因此弦
的長為定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
討論
的單調(diào)性;
若
是
的極值點(diǎn),且曲線
在兩點(diǎn)
處的切線相互平行,這兩條切線在
軸上的截距分別為
,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O經(jīng)過橢圓C:=1(a>b>0)的兩個焦點(diǎn)以及兩個頂點(diǎn),且點(diǎn)(b,
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且|MN|=,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知依次滿足
(1)求點(diǎn)的軌跡;
(2)過點(diǎn)作直線
交以
為焦點(diǎn)的橢圓于
兩點(diǎn),線段
的中點(diǎn)到
軸的距離為
,且直線
與點(diǎn)
的軌跡相切,求該橢圓的方程;
(3)在(2)的條件下,設(shè)點(diǎn)的坐標(biāo)為
,是否存在橢圓上的點(diǎn)
及以
為圓心的一個圓,使得該圓與直線
都相切,如存在,求出
點(diǎn)坐標(biāo)及圓的方程,如不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】邊長為的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,這個定值等于
;將這個結(jié)論推廣到空間是:棱長為
的正四面體內(nèi)任一點(diǎn)到各面距離之和等于________________.(具體數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
討論函數(shù)
的單調(diào)性;
設(shè)
,對任意
的恒成立,求整數(shù)
的最大值;
求證:當(dāng)
時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在
,分?jǐn)?shù)在
以上(含
)的同學(xué)獲獎. 按文理科用分層抽樣的方法抽取
人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).
(1)求的值,并計算所抽取樣本的平均值
(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)填寫下面的列聯(lián)表,能否有超過
的把握認(rèn)為“獲獎與學(xué)生的文理科有關(guān)”?
文科生 | 理科生 | 合計 | |
獲獎 | |||
不獲獎 | |||
合計 |
附表及公式:
,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】40名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如下:
(1)求頻率分布直方圖中的值;
(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù) (保留小數(shù)點(diǎn)后兩位數(shù)字)和眾數(shù);
(3)從成績在的學(xué)生中任選3人,求這3人的成績都在
中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若,證明:
;
(2)已知,若函數(shù)
有兩個零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com