日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知ABCD-A1B1C1D1是棱長為3的正方體,點(diǎn)E在AA1上,點(diǎn)F在CC1上,且AE=FC1=1.

          (1)求證:E,B,F(xiàn),D1四點(diǎn)共面;

          (2)若點(diǎn)G在BC上,BG=,點(diǎn)M在BB1上,GM⊥BF,垂足為H,求證:EM⊥面BCC1B1;

          (3)用表示截面EBFD1和面BCC1B1所成銳二面角大小,求tan

          答案:
          解析:

            解:(1)證明:在DD1上取一點(diǎn)N使得DN=1,連接CN,EN,顯然四邊形CFD1N是平行四邊形,所以D1F∥CN,同理四邊形DNEA是平行四邊形,所以EN∥AD,且EN=AD,又BC∥AD,且AD=BC,所以EN∥BC,EN=BC,所以四邊形CNEB是平行四邊形,所以CN∥BE,所以D1F∥BE,所以E,B,F(xiàn),D1四點(diǎn)共面.

            (2)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60R0/0041/0018/d1e7b9a8b5a412ce3d39e865ffa21e83/C/Image45.gif" width=72 height=18>所以MBG,所以,即,所以MB=1,因?yàn)锳E=1,所以四邊形ABME是矩形,所以EM⊥BB1又平面ABB1A1⊥平面BCC1B1,且EM在平面ABB1A1內(nèi),所以

            (3),所以BF,MH,,所以∠MHE就是截面和面所成銳二面角的平面角,∠EMH=,所以,ME=AB=3,MHB,所以3∶MH=BF∶1,BF=,所以MH=,所以


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          18、如圖,已知ABCD是矩形,E是以CD為直徑的半圓周上一點(diǎn),且平面CDE⊥平面ABCD,求證:CE⊥平面ADE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知ABCD 為平行四邊形,∠A=60°,AF=2FB,AB=6,點(diǎn)E 在CD 上,EF∥BC,BD⊥AD,BD 與EF 相交于N.現(xiàn)將四邊形ADEF 沿EF 折起,使點(diǎn)D 在平面BCEF 上的射影恰在直線BC 上.
          (Ⅰ) 求證:BD⊥平面BCEF;
          (Ⅱ) 求折后直線DE 與平面BCEF 所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•汕頭二模)如圖,已知ABCD-A1B1C1D1是底面邊長為1的正四棱柱,
          (1)證明:平面AB1D1⊥平面AA1C1
          (2)當(dāng)二面角B1-AC1-D1的平面角為120°時(shí),求四棱錐A-A1B1C1D1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知ABCD是正方形,DE⊥平面ABCD,BF⊥平面ABCD,且AB=FB=2DE.
          (Ⅰ)求證:平面AEC⊥平面AFC;
          (Ⅱ)求直線EC與平面BCF所成的角;
          (Ⅲ)問在EF上是否存在一點(diǎn)M,使三棱錐M-ACF是正三棱錐?若存在,試確定M點(diǎn)的位置;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2005•普陀區(qū)一模)如圖,已知ABCD和A1B1C1D1都是正方形,且AB∥A1B1,AA1=BB1=CC1=DD1,若將圖中已作出的線段的兩個(gè)端點(diǎn)分別作為向量的始點(diǎn)和終點(diǎn)所形成的不相等的向量的全體構(gòu)成集合M,則從集合M中任取兩個(gè)向量恰為平行向量的概率是
          2
          15
          2
          15
          (用分?jǐn)?shù)表示結(jié)果).

          查看答案和解析>>

          同步練習(xí)冊答案