日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱柱ABC-平面ABC,DE,F,G分別為,AC,的中點(diǎn),AB=BC=AC==2.

          求證AC平面BEF

          求二面角B-CD-C1的余弦值;

          證明直線FG與平面BCD相交

          【答案】(1)證明見解析

          (2) B-CD-C1的余弦值為

          (3)證明過程見解析

          【解析】分析:(1)由等腰三角形性質(zhì)得,由線面垂直性質(zhì)得,由三棱柱性質(zhì)可得,因此,最后根據(jù)線面垂直判定定理得結(jié)論,(2)根據(jù)條件建立空間直角坐標(biāo)系E-ABF,設(shè)立各點(diǎn)坐標(biāo),利用方程組解得平面BCD一個(gè)法向量,根據(jù)向量數(shù)量積求得兩法向量夾角,再根據(jù)二面角與法向量夾角相等或互補(bǔ)關(guān)系求結(jié)果,(3)根據(jù)平面BCD一個(gè)法向量與直線FG方向向量數(shù)量積不為零,可得結(jié)論.

          詳解:解:(在三棱柱ABC-A1B1C1中,

          CC1⊥平面ABC

          ∴四邊形A1ACC1為矩形.

          E,F分別為AC,A1C1的中點(diǎn),

          ACEF

          AB=BC

          ACBE,

          AC⊥平面BEF

          (Ⅱ)由(I)知ACEFACBE,EFCC1

          CC1⊥平面ABC,∴EF⊥平面ABC

          BE平面ABC,∴EFBE

          如圖建立空間直角坐稱系E-xyz

          由題意得B(0,2,0),C-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).

          設(shè)平面BCD的法向量為,

          ,∴,

          a=2,則b=-1,c=-4,

          ∴平面BCD的法向量,

          又∵平面CDC1的法向量為,

          由圖可得二面角B-CD-C1為鈍角,所以二面角B-CD-C1的余弦值為

          Ⅲ)平面BCD的法向量為,G(0,2,1),F(0,0,2),

          ,∴,∴不垂直,

          GF與平面BCD不平行且不在平面BCD內(nèi),∴GF與平面BCD相交.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線Cy2=2px過點(diǎn)P(1,1).過點(diǎn)(0, )作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)Mx軸的垂線分別與直線OPON交于點(diǎn)A,B,其中O為原點(diǎn).

          (Ⅰ)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

          (Ⅱ)求證:A為線段BM的中點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某公司需要對所生產(chǎn)的三種產(chǎn)品進(jìn)行檢測,三種產(chǎn)品數(shù)量(單位:件)如下表所示:

          產(chǎn)品

          A

          B

          C

          數(shù)量(件)

          180

          270

          90

          采用分層抽樣的方法從以上產(chǎn)品中共抽取6.

          1)求分別抽取三種產(chǎn)品的件數(shù);

          2)將抽取的6件產(chǎn)品按種類編號,分別記為,現(xiàn)從這6件產(chǎn)品中隨機(jī)抽取2.

          (。┯盟o編號列出所有可能的結(jié)果;

          (ⅱ)求這兩件產(chǎn)品來自不同種類的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[2018·郴州期末]已知三棱錐中,垂直平分,垂足為,是面積為的等邊三角形,,,平面,垂足為,為線段的中點(diǎn).

          (1)證明:平面;

          (2)求與平面所成的角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】AB為過拋物線焦點(diǎn)F的弦,P為AB中點(diǎn),A、B、P在準(zhǔn)線l上射影分別為M、N、Q,則下列命題: 以AB為直徑作圓,則此圓與準(zhǔn)線l相交;;;、O、N三點(diǎn)共線為原點(diǎn),正確的是______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線C=2px經(jīng)過點(diǎn)(1,2).過點(diǎn)Q(0,1)的直線l與拋物線C有兩個(gè)不同的交點(diǎn)A,B且直線PAy軸于M,直線PBy軸于N

          求直線l的斜率的取值范圍

          設(shè)O為原點(diǎn),,求證為定值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為, 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

          (1)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;

          (2)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知?jiǎng)狱c(diǎn)P到定點(diǎn)的距離比它到直線的距離小2,設(shè)動(dòng)點(diǎn)P的軌跡為曲線C

          求曲線C的方程;

          若直線與曲線C和圓從左至右的交點(diǎn)依次為A,B,C,D的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某食品的保鮮時(shí)間y(單位:小時(shí))與儲(chǔ)存溫度x(單位:)滿足函數(shù)關(guān)系 km為常數(shù)).若該食品在0的保鮮時(shí)間是64小時(shí),在18的保鮮時(shí)間是16小時(shí),則該食品在36的保鮮時(shí)間是(

          A.4小時(shí)B.8小時(shí)C.16小時(shí)D.32小時(shí)

          查看答案和解析>>

          同步練習(xí)冊答案