日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線C:y=2x2,點(diǎn)A(0,-2)及點(diǎn)B(3,a),從點(diǎn)A觀察點(diǎn)B,要使視線不被C擋住,則實(shí)數(shù)a的取值范圍是
          (-∞,10)
          (-∞,10)
          分析:先看視線最高時(shí)為拋物線切線,而且為右上方向,設(shè)出切線的方程與拋物線方程聯(lián)立消去y,根據(jù)判別式等于0求得k的值,進(jìn)而求得切線的方程,把x=3代入即可求得y的值,B點(diǎn)只要在此切線下面都滿足題意,進(jìn)而求得a的范圍.
          解答:解:視線最高時(shí)為拋物線切線,而且為右上方向
          設(shè)切線y=kx-2(k>0)
          與拋物線方程聯(lián)立得2x2-kx+2=0
          △=k2-16=0
          k=4(負(fù)的舍去)
          ∴切線為y=4x-2
          取x=3得y=10
          B點(diǎn)只要在此切線下面都滿足題意
          ∴a<10
          故答案為:(-∞,10).
          點(diǎn)評(píng):本題主要考查了拋物線的簡(jiǎn)單性質(zhì),直線與拋物線的位置關(guān)系.考查了學(xué)生創(chuàng)造性思維能力和基本的分析推理能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知曲線C:y=x3-3x2+2x,直線l:y=kx,且直線l與曲線C相切于點(diǎn)(x0,y0)(x0≠0),求直線l的方程及切點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知曲線C:y=x3-3x2,直線l:y=-2x
          (1)求曲線C與直線l圍成的區(qū)域的面積;
          (2)求曲線y=x3-3x2(0≤x≤1)與直線l圍成的圖形繞x軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知曲線C:y=x3-2x+3
          (Ⅰ)求曲線C在x=-1處的切線方程;
          (Ⅱ)點(diǎn)P在曲線C上運(yùn)動(dòng),曲線C在點(diǎn)P處的切線的傾斜角的范圍是[0,
          π4
          ]
          ,求點(diǎn)P的橫坐標(biāo)的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知曲線C:y2=2x(y≥0),A1(x1,y1),A2(x2,y2),…,An(xn,yn),…是曲線C上的點(diǎn),且滿足0<x1<x2<…<xn<…,一列點(diǎn)Bi(ai,0)(i=1,2,…)在x軸上,且△Bi-1AiBi(B0是坐標(biāo)原點(diǎn))是以Ai為直角頂點(diǎn)的等腰直角三角形.
          (Ⅰ)求A1、B1的坐標(biāo);
          (Ⅱ)求數(shù)列{yn}的通項(xiàng)公式;
          (Ⅲ)令bi=
          4
          ai
          ,ci=(
          2
          )-yi
          ,是否存在正整數(shù)N,當(dāng)n≥N時(shí),都有
          n
          i=1
          bi
          n
          i=1
          ci
          ,若存在,求出N的最小值;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知曲線C:y=
          1-x2
          與直線l:y=2x+k,當(dāng)k為何值時(shí),l與C:①有一個(gè)公共點(diǎn);②有兩個(gè)公共點(diǎn);③沒(méi)有公共點(diǎn).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案