【題目】已知函數(shù).
(1)若在
上單調(diào)遞減,求
的取值范圍;
(2)若在
處取得極值,判斷當(dāng)
時(shí),存在幾條切線與直線
平行,請說明理由;
(3)若有兩個(gè)極值點(diǎn)
,求證:
.
【答案】(Ⅰ);(Ⅱ)答案見解析;(Ⅲ)證明見解析.
【解析】
(Ⅰ)由題意可得恒成立 ,構(gòu)造函數(shù),令
,由導(dǎo)函數(shù)的解析式可知
在
遞增,在
遞減, 據(jù)此計(jì)算可得實(shí)數(shù)a的取值范圍.
(Ⅱ) 由在
處取得極值可得
.原問題等價(jià)于求解
在區(qū)間
內(nèi)解的個(gè)數(shù),結(jié)合導(dǎo)函數(shù)的解析式研究函數(shù)的單調(diào)性和函數(shù)在特殊點(diǎn)處的函數(shù)值即可確定切線的條數(shù).而事實(shí)情況下檢驗(yàn)
時(shí)函數(shù)
不存在極值點(diǎn),所以不存在滿足題意的實(shí)數(shù)
,也不存在滿足題意的切線.
(Ⅲ)若函數(shù)有兩個(gè)極值點(diǎn),不妨設(shè)
,易知
,結(jié)合函數(shù)的解析式和零點(diǎn)的性質(zhì)即可證得題中的不等式.
(Ⅰ)由已知,恒成立
令,
則,
,令
,解得:
,令
,解得:
,
故在
遞增,在
遞減,
,由
恒成立可得
.
即當(dāng)在
上單調(diào)遞減時(shí),
的取值范圍是
.
(Ⅱ)在
處取得極值,則
,可得
.
令,即
.
設(shè),則
.
故在
上單調(diào)遞增,在
上單調(diào)遞減,
注意到,
,
則方程在
內(nèi)只有一個(gè)實(shí)數(shù)根,
即當(dāng)時(shí),只有一條斜率為
且與函數(shù)
圖像相切的直線.
但事實(shí)上,若,則
,
,
故函數(shù)在區(qū)間
上單調(diào)遞增,在區(qū)間
上單調(diào)遞減,
且,故函數(shù)
在區(qū)間
上恒成立,
函數(shù)在區(qū)間
上單調(diào)遞減,即函數(shù)不存在極值點(diǎn),
即不存在滿足題意的實(shí)數(shù),也不存在滿足題意的切線.
(Ⅲ)若函數(shù)有兩個(gè)極值點(diǎn),不妨設(shè)
,
由(Ⅰ)可知,且:
①,
②,
由①-②得:,
即 ,
由①+②得:,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)
的導(dǎo)函數(shù)
的圖象與
軸交于
,
兩點(diǎn),其橫坐標(biāo)分別為
,
,線段
的中點(diǎn)的橫坐標(biāo)為
,且
,
恰為函數(shù)
的零點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面是邊長為2的菱形,∠BAD=60°,PB=PD=2,PA,AC∩BD=O
(1)設(shè)平面ABP∩平面DCP=l,證明:l∥AB
(2)若E是PA的中點(diǎn),求三棱錐P﹣BCE的體積VP﹣BCE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l:yx﹣3經(jīng)過橢圓
1(a>b>0)的一個(gè)焦點(diǎn),且點(diǎn)(0,b)到直線l的距離為2.
(1)求橢圓E的方程;
(2)A、B、C是橢圓E上的三個(gè)動(dòng)點(diǎn),A與B關(guān)于原點(diǎn)對稱,且|CA|=|CB|,求△ABC面積的最小值,并求此時(shí)點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(
)的左右焦點(diǎn)分別為
,
,點(diǎn)
為短軸的一個(gè)端點(diǎn),
.
(1)求橢圓C的方程;
(2)如圖,過右焦點(diǎn),且斜率為k(
)的直線l與橢圓C相交于D,E兩點(diǎn),A為橢圓的右頂點(diǎn),直線
,
分別交直線
于點(diǎn)M,N,線段
的中點(diǎn)為P,記直線
的斜率為
.試問
是否為定值?若為定值,求出該定值;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個(gè)更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).
(1)分別計(jì)算按這兩種方案所建的倉庫的體積;
(2)分別計(jì)算按這兩種方案所建的倉庫的表面積;
(3)哪個(gè)方案更經(jīng)濟(jì)些?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線:
的焦點(diǎn)為
,拋物線過點(diǎn)
.
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程與其準(zhǔn)線
的方程;
(Ⅱ)過點(diǎn)作直線與拋物線
交于
,
兩點(diǎn),過
,
分別作拋物線的切線,證明兩條切線的交點(diǎn)在拋物線
的準(zhǔn)線
上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復(fù)發(fā)的情況進(jìn)行了統(tǒng)計(jì),得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為.
(1)補(bǔ)充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有
把握認(rèn)為甲乙兩套治療方案對患者白血病復(fù)發(fā)有影響;
復(fù)發(fā) | 未復(fù)發(fā) | 總計(jì) | |
甲方案 | |||
乙方案 | 2 | ||
總計(jì) | 70 |
(2)為改進(jìn)“甲方案”,按分層抽樣組成了由5名患者構(gòu)成的樣本,求隨機(jī)抽取2名患者恰好是復(fù)發(fā)患者和未復(fù)發(fā)患者各1名的概率.
附:
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 |
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)
在點(diǎn)
處的切線方程;
(2)若函數(shù)存在兩個(gè)極值點(diǎn)
,
①求實(shí)數(shù)的范圍;
②證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com