日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=-3n+21),其中λ為實數(shù),n為正整數(shù).Sn為數(shù)列{bn}的前n項和.
          (1)對任意實數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
          (2)對于給定的實數(shù)λ,試求數(shù)列{bn}的通項公式,并求Sn
          (3)設(shè)0<a<b(a,b為給定的實常數(shù)),是否存在實數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.
          【答案】分析:(1)假設(shè)存在一個實數(shù)?,使{an}是等比數(shù)列,由題意知( 2=2 ,矛盾.所以{an}不是等比數(shù)列.
          (2)研究數(shù)列相鄰兩項,看相鄰項的關(guān)系,以確定數(shù)列bn的性質(zhì),然后求出其通項公式;最后根據(jù)等比數(shù)列的求和公式并求Sn
          (3)求出數(shù)列的前n項和,然后根據(jù)形式結(jié)合指數(shù)函數(shù)的性質(zhì)求出其最值,則參數(shù)的范圍易知.
          解答:證明:(1)假設(shè)存在一個實數(shù)?,使{an}是等比數(shù)列,則有a22=a1a3
          即(2=2,
          矛盾.所以{an}不是等比數(shù)列.
          (2)因為bn+1=(-1)n+1[an+1-3(n+1)+21]=(-1)n+1an-2n+14)
          =-(-1)n•(an-3n+21)=-bn
          當(dāng)λ≠-18時,b1=-(λ+18)≠0,由上可知bn≠0,
          (n∈N+).
          故當(dāng)λ≠-18時,數(shù)列{bn}是以-(λ+18)為首項,-為公比的等比數(shù)列.,
          當(dāng)λ=-18時,bn=0,Sn=0
          (3)由(2)知,當(dāng)λ=-18,bn=0,Sn=0,不滿足題目要求.
          ∴λ≠-18,
          要使a<Sn<b對任意正整數(shù)n成立,
          即a<-(λ+18)•[1-(-n]<b(n∈N+)…①

          當(dāng)n為正奇數(shù)時,1<f(n),
          ∴f(n)的最大值為f(1)=,f(n)的最小值為f(2)=,
          于是,由①式得a<-(λ+18)<
          當(dāng)a<b≤3a時,由-b-18≥=-3a-18,不存在實數(shù)滿足題目要求;
          當(dāng)b>3a存在實數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b,且λ的取值范圍是(-b-18,-3a-18).
          點評:本題屬于數(shù)列綜合運用題,考查了由所給的遞推關(guān)系證明數(shù)列的性質(zhì),對所給的遞推關(guān)系進(jìn)行研究求數(shù)列的遞推公式以及利用數(shù)列的求和公式求其和,再由和的存在范圍確定使得不等式成立的參數(shù)的取值范圍,難度較大,綜合性很強(qiáng),對答題者探究的意識與探究規(guī)律的能力要求較高,是一道能力型題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}和{bn}滿足:a=1,a1=2,a2>0,bn=
          a1an+1
          (n∈N*)
          .且{bn}是以
          a為公比的等比數(shù)列.
          (Ⅰ)證明:aa+2=a1a2;
          (Ⅱ)若a3n-1+2a2,證明數(shù)例{cx}是等比數(shù)例;
          (Ⅲ)求和:
          1
          a1
          +
          1
          a2
          +
          1
          a3
          +
          1
          a4
          +
          +
          1
          a2n-1
          +
          1
          a2n

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}和{bn}滿足a1=m,an+1an+n,bn=an-
          2n
          3
          +
          4
          9

          (1)當(dāng)m=1時,求證:對于任意的實數(shù)λ,{an}一定不是等差數(shù)列;
          (2)當(dāng)λ=-
          1
          2
          時,試判斷{bn}是否為等比數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=4,a2=b2=2,a3=1,且數(shù)列{an+1-an}是等差數(shù)列,n∈N*,
          (Ⅰ)求數(shù)列{an}和{bn}的通項公式;
          (Ⅱ)問是否存在k∈N*,使得ak-bk∈(
          12
          ,3]
          ?若存在,求出k的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
          23
          an+n-4,bn=(-1)n(an-3n+21)其中λ為實數(shù),且λ≠-18,n為正整數(shù).
          (Ⅰ)求證:{bn}是等比數(shù)列;
          (Ⅱ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項和.是否存在實數(shù)λ,使得對任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•孝感模擬)已知數(shù)列{an}和{bn}滿足a1=1且bn=1-2an,bn+1=
          bn
          1-4 
          a
          2
          n

          (I)證明:數(shù)列{
          1
          an
          }是等差數(shù)列,并求數(shù)列{an}的通項公式;
          (Ⅱ)求使不等式(1+a1)(1+a2)…(1+an)≥k
          1
          b2b3bnbn+1 
          對任意正整數(shù)n都成立的最大實數(shù)k.

          查看答案和解析>>

          同步練習(xí)冊答案