日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}和{bn}滿足:a=1,a1=2,a2>0,bn=
          a1an+1
          (n∈N*)
          .且{bn}是以
          a為公比的等比數(shù)列.
          (Ⅰ)證明:aa+2=a1a2;
          (Ⅱ)若a3n-1+2a2,證明數(shù)例{cx}是等比數(shù)例;
          (Ⅲ)求和:
          1
          a1
          +
          1
          a2
          +
          1
          a3
          +
          1
          a4
          +
          +
          1
          a2n-1
          +
          1
          a2n
          分析:(Ⅰ)由
          bn+1
          bn
          =q
          ,知
          an+1an+2
          anan+1
          =
          an+2
          an
          =q
          ,由此可得an+2=anq2(n∈N*).
          (Ⅱ)由題意知a2n-1=a1q2n-2,a2n=a2qn-2,所以cn=a2n-1+2a2n=5q2n-2.由此可知{cn}是首項(xiàng)為5,以q2為公比的等比數(shù)列.
          (Ⅲ)由題設(shè)條件得
          1
          a2n-1
          =
          1
          a1
          q2-2n
          ,
          1
          a2n
          =
          1
          a2
          q2-2n
          ,所以
          1
          a1
          +
          1
          a2
          +…+
          1
          a2n
          =(
          1
          a1
          +
          1
          a3
          +…+
          1
          a2n-1
          )+(
          1
          a2
          +
          1
          a4
          +…+
          1
          a2n
          )
          =
          3
          2
          (1+
          1
          q2
          +
          1
          q1
          +…+
          1
          q2n-2
          )
          .由此可知
          1
          a1
          +
          1
          a2
          +…+
          1
          a2n
          =
          3
          2
          n,q=1
          3
          2
          [
          q2n-1
          q2n-2(q2-1)
          ],q≠1.
          解答:解:(Ⅰ)證:由
          bn+1
          bn
          =q
          ,
          an+1an+2
          anan+1
          =
          an+2
          an
          =q
          ,
          ∴an+2=anq2(n∈N*).

          (Ⅱ)證:∵an=qn-2q2
          ∴a2n-1=a2n-3q2=a1q2n-2,
          a2n=a2n-2q2=a2qn-2
          ∴cn=a2n-1+2a2n=a1q2n-2+2a2q2n-2=(a1+2a2)q2n-2=5q2n-2
          ∴{cn}是首項(xiàng)為5,以q2為公比的等比數(shù)列.

          (Ⅲ)由(Ⅱ)得
          1
          a2n-1
          =
          1
          a1
          q2-2n
          ,
          1
          a2n
          =
          1
          a2
          q2-2n
          ,于是
          1
          a1
          +
          1
          a2
          +…+
          1
          a2n

          =(
          1
          a1
          +
          1
          a3
          +…+
          1
          a2n-1
          )+(
          1
          a2
          +
          1
          a4
          +…+
          1
          a2n
          )

          =
          1
          a1
          (1+
          1
          q2
          +
          1
          q4
          +…+
          1
          q2n-2
          )+
          1
          a2
          (1+
          1
          q2
          +
          1
          q4
          +…+
          1
          q2n-2
          )

          =
          3
          2
          (1+
          1
          q2
          +
          1
          q1
          +…+
          1
          q2n-2
          )

          當(dāng)q=1時(shí),
          1
          a1
          +
          1
          a2
          +…+
          1
          a2n
          =
          3
          2
          (1+
          1
          q2
          +
          1
          q4
          +…+
          1
          q2n-2
          )
          =
          3
          2
          n

          當(dāng)q≠1時(shí),
          1
          a1
          +
          1
          a2
          +…+
          1
          a2n
          =
          3
          2
          (1+
          1
          q2
          +
          1
          q4
          +…+
          1
          q2n-2
          )
          =
          3
          2
          (
          1-q-2n
          1-q-2
          )
          =
          3
          2
          [
          q2n-1
          q2n-2(q2-1)
          ]

          1
          a1
          +
          1
          a2
          +…+
          1
          a2n
          =
          3
          2
          n,q=1
          3
          2
          [
          q2n-1
          q2n-2(q2-1)
          ],q≠1.
          點(diǎn)評(píng):本題主要考查等比數(shù)列的定義,通項(xiàng)公式和求和公式等基本知識(shí)及基本的運(yùn)算技能,考查分析問題能力和推理能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}和{bn}滿足a1=m,an+1an+n,bn=an-
          2n
          3
          +
          4
          9

          (1)當(dāng)m=1時(shí),求證:對(duì)于任意的實(shí)數(shù)λ,{an}一定不是等差數(shù)列;
          (2)當(dāng)λ=-
          1
          2
          時(shí),試判斷{bn}是否為等比數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}和等比數(shù)列{bn}滿足:a1=b1=4,a2=b2=2,a3=1,且數(shù)列{an+1-an}是等差數(shù)列,n∈N*
          (Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
          (Ⅱ)問是否存在k∈N*,使得ak-bk∈(
          12
          ,3]
          ?若存在,求出k的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=
          23
          an+n-4,bn=(-1)n(an-3n+21)其中λ為實(shí)數(shù),且λ≠-18,n為正整數(shù).
          (Ⅰ)求證:{bn}是等比數(shù)列;
          (Ⅱ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•孝感模擬)已知數(shù)列{an}和{bn}滿足a1=1且bn=1-2anbn+1=
          bn
          1-4 
          a
          2
          n

          (I)證明:數(shù)列{
          1
          an
          }是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
          (Ⅱ)求使不等式(1+a1)(1+a2)…(1+an)≥k
          1
          b2b3bnbn+1 
          對(duì)任意正整數(shù)n都成立的最大實(shí)數(shù)k.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案