已知函數(shù),其中
,
為自然對(duì)數(shù)的底數(shù)。
(Ⅰ)設(shè)是函數(shù)
的導(dǎo)函數(shù),求函數(shù)
在區(qū)間
上的最小值;
(Ⅱ)若,函數(shù)
在區(qū)間
內(nèi)有零點(diǎn),證明:
.
(Ⅰ)當(dāng)時(shí),
;當(dāng)
時(shí),
;
當(dāng)時(shí),
.(Ⅱ)
的范圍為
.
解析試題分析:(Ⅰ)易得,再對(duì)分
情況確定
的單調(diào)區(qū)間,根據(jù)
在
上的單調(diào)性即可得
在
上的最小值.(Ⅱ)設(shè)
為
在區(qū)間
內(nèi)的一個(gè)零點(diǎn),注意到
.聯(lián)系到函數(shù)的圖象可知,導(dǎo)函數(shù)
在區(qū)間
內(nèi)存在零點(diǎn)
,
在區(qū)間
內(nèi)存在零點(diǎn)
,即
在區(qū)間
內(nèi)至少有兩個(gè)零點(diǎn). 由(Ⅰ)可知,當(dāng)
及
時(shí),
在
內(nèi)都不可能有兩個(gè)零點(diǎn).所以
.此時(shí),
在
上單調(diào)遞減,在
上單調(diào)遞增,因此
,且必有
.由
得:
,代入這兩個(gè)不等式即可得
的取值范圍.
試題解析:(Ⅰ)
①當(dāng)時(shí),
,所以
.
②當(dāng)時(shí),由
得
.
若,則
;若
,則
.
所以當(dāng)時(shí),
在
上單調(diào)遞增,所以
.
當(dāng)時(shí),
在
上單調(diào)遞減,在
上單調(diào)遞增,所以
.
當(dāng)時(shí),
在
上單調(diào)遞減,所以
.
(Ⅱ)設(shè)為
在區(qū)間
內(nèi)的一個(gè)零點(diǎn),則由
可知,
在區(qū)間
上不可能單調(diào)遞增,也不可能單調(diào)遞減.
則不可能恒為正,也不可能恒為負(fù).
故在區(qū)間
內(nèi)存在零點(diǎn)
.
同理在區(qū)間
內(nèi)存在零點(diǎn)
.
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
。
(1)求函數(shù)在
上的值域;
(2)若,對(duì)
,
恒成立,
求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
,
為自然對(duì)數(shù)的底數(shù).
(I)求函數(shù)的極值;
(2)若方程有兩個(gè)不同的實(shí)數(shù)根,試求實(shí)數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)若時(shí),函數(shù)
有三個(gè)互不相同的零點(diǎn),求
的取值范圍;
(2)若函數(shù)在
內(nèi)沒(méi)有極值點(diǎn),求
的取值范圍;
(3)若對(duì)任意的,不等式
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)f(x)=ax3+3x2+3x(a≠0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)在區(qū)間(1,2)是增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求的單調(diào)區(qū)間和極值;
(2)若對(duì)于任意的,都存在
,使得
,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),其中
是
的導(dǎo)函數(shù).
,
(1)求的表達(dá)式;
(2)若恒成立,求實(shí)數(shù)
的取值范圍;
(3)設(shè),比較
與
的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),函數(shù)
.
(1)若x=2是函數(shù)的極值點(diǎn),求
的值;
(2)設(shè)函數(shù),若
≤0對(duì)一切
都成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(
R),
為其導(dǎo)函數(shù),且
時(shí)
有極小值
.
(1)求的單調(diào)遞減區(qū)間;
(2)若,
,當(dāng)
時(shí),對(duì)于任意x,
和
的值至少有一個(gè)是正數(shù),求實(shí)數(shù)m的取值范圍;
(3)若不等式(
為正整數(shù))對(duì)任意正實(shí)數(shù)
恒成立,求
的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com