日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直三棱柱中,,

          (Ⅰ)求證:平面
          (Ⅱ)若的中點(diǎn),求與平面所成的角.

          (1)證明過(guò)程詳見解析;(2)所成的角為

          解析試題分析:本題主要考查空間線、面位置關(guān)系,線面所成的角等基礎(chǔ)知識(shí),同時(shí)考查空間想象能力和推理論證能力.第一問(wèn),先利用正方形得對(duì)角線互相垂直,再利用線面垂直得到線線垂直,再利用線面垂直的判定定理得到線面垂直平面;第二問(wèn),先由已知條件判斷是正三角形,由第一問(wèn)的結(jié)論可知,與平面所成的角,在直角中,得出,所以,即與平面所成的角為
          試題解析:(Ⅰ) 由題意知四邊形是正方形,故
          平面,得
          ,所以平面,故
          從而得平面.        7分
          (Ⅱ)設(shè)相交于點(diǎn),則點(diǎn)是線段的中點(diǎn).
          連接,由題意知是正三角形.
          ,的中線知:的交點(diǎn)為重心,連接
          由(Ⅰ)知平面,故在平面上的射影,于是與平面所成的角.
          在直角中,, ,
          所以
          ,即與平面所成的角為.    15分
          考點(diǎn):1.線面垂直的判定定理;2.線面垂直的性質(zhì);3.中線的性質(zhì);4.直角三角形中求正弦.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在直三棱柱(側(cè)棱和底面垂直的棱柱)中,平面側(cè)面,,,且滿足.

          (1)求證:;
          (2)求點(diǎn)的距離;
          (3)求二面角的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿分14分)如圖,在四面體A?BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中點(diǎn).

          (1)證明:平面ABC平面ADC;
          (2)若ÐBDC=60°,求二面角C?BM?D的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          正方體的棱長(zhǎng)為,線段上有兩個(gè)動(dòng)點(diǎn),且,則下列結(jié)論中錯(cuò)誤的是(     )

          A.
          B.三棱錐的體積為定值
          C.二面角的大小為定值
          D.異面直線所成角為定值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱錐E—ABCD中,底面ABCD為邊長(zhǎng)為5的正方形,AE平面CDE,AE=3.

          (1)若的中點(diǎn),求證:平面;
          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,四面體中,、分別是的中點(diǎn),

          (Ⅰ)求證:平面;
          (Ⅱ)求二面角的正切值;
          (Ⅲ)求點(diǎn)到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,直棱柱中,分別是的中點(diǎn),.

          ⑴證明:;
          ⑵求EC與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,直三棱柱中,、分別是棱的中點(diǎn),點(diǎn)在棱上,已知,

          (1)求證:平面;
          (2)設(shè)點(diǎn)在棱上,當(dāng)為何值時(shí),平面平面?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

          (I)求證:CD⊥平面PAC;
          (II)側(cè)棱PA上是否存在點(diǎn)E,使得BE∥平面PCD?若存在,指出點(diǎn)E的位置,并證明,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案