如圖,在四棱錐中,底面為直角梯形,
,
垂直于底面
,
分別為
的中點(diǎn).
(1)求證:;
(2)求點(diǎn)到平面
的距離.
(1)證明見解析;(2).
【解析】
試題分析:(1)要證兩直線垂直,一般是證一條直線與過另一條直線的某個(gè)平面垂直,例如能否證明垂直于過
的平面
,下面就是要在平面
內(nèi)找兩條與
垂直的直線,從題尋找垂直,
是等腰
的底邊上的中線,與
是垂直的,另一條是直線
垂直于平面
,當(dāng)然也垂直于直線
,得證;(2)求點(diǎn)
到平面
距離,關(guān)鍵是過點(diǎn)
作出平面
的垂線,這一點(diǎn)在本題中還是委容易的,因?yàn)槠矫?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032205023329844144/SYS201403220503014859526719_DA.files/image010.png">
平面
,故只要在平面
內(nèi)過
作
的垂線,這條垂線也我們要求作的平面的垂線,另外體積法在本題中也可采用.
試題解析:(1)因?yàn)镹是PB的中點(diǎn),PA=AB,
所以AN⊥PB,因?yàn)锳D⊥面PAB,所以AD⊥PB,又因?yàn)锳D∩AN=A
從而PB⊥平面ADMN,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032205023329844144/SYS201403220503014859526719_DA.files/image014.png">平面ADMN,
所以PB⊥DM. 7′
(2) 連接AC,過B作BH⊥AC,因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014032205023329844144/SYS201403220503014859526719_DA.files/image015.png">⊥底面,
所以平面PAB⊥底面,所以BH是點(diǎn)B到平面PAC的距離.
在直角三角形ABC中,BH=
14′
考點(diǎn):(1)空間兩直線垂直;(2)點(diǎn)到平面的距離.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年廣西省桂林中學(xué)高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題
((本小題滿分12分)
如圖,在四棱錐中,底面
是矩形.已知
.
(1)證明平面
;
(2)求異面直線與
所成的角的大;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆福建省三明市高三第一學(xué)期測試?yán)砜茢?shù)學(xué)試卷 題型:解答題
如圖,在四棱錐中,底面
是菱形,
,
,
,
平面
,
是
的中點(diǎn),
是
的中點(diǎn).
(Ⅰ) 求證:∥平面
;
(Ⅱ)求證:平面⊥平面
;
(Ⅲ)求平面與平面
所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆上海市高二年級期終考試數(shù)學(xué) 題型:解答題
(本題滿分16分)
如圖,在四棱錐中,底面
是矩形.已知
.
(1)證明平面
;
(2)求異面直線與
所成的角的大;
(3)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年江蘇省高二下學(xué)期期末考試附加卷數(shù)學(xué)卷 題型:解答題
如圖,在四棱錐中,底面
是正方形,側(cè)棱
,
為
中點(diǎn),作
交
于
(1)求PF:FB的值
(2)求平面與平面
所成的銳二面角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆浙江省高三6月考前沖刺卷數(shù)學(xué)理 題型:解答題
(本小題滿分14分)
如圖,在四棱錐中,底面
為平行四邊形,
平面
,
在棱
上.
(Ⅰ)當(dāng)時(shí),求證
平面
(Ⅱ)當(dāng)二面角的大小為
時(shí),求直線
與平面
所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com