日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E為D1C1的中點(diǎn),連結(jié)ED,EC,EB和DB.
          (1)求證:DE⊥平面EBC;
          (2)求二面角E-DB-C的正切值.
          分析:通過建立空間直角坐標(biāo)系,
          (1)利用數(shù)量積為0與向量垂直的關(guān)系及線面垂直的判定定理即可得出;
          (2)利用兩個(gè)平面的法向量的夾角即可得出二面角的平面角的余弦值,再利用三角函數(shù)的基本關(guān)系式即可得出.
          解答:(1)證明:如圖所示,建立空間直角坐標(biāo)系.D(0,0,0),E(0,1,1),B(1,2,0),C(0,2,0).
          DE
          =(0,1,1),
          BE
          =(-1,-1,1),
          EC
          =(0,1,-1).∴
          DE
          BE
          =0-1+1=0,
          DE
          EC
          =0+1-1=0.
          DE
          BE
          ,
          DE
          EC

          即DE⊥BE,DE⊥EC,而BE∩EC=E.
          ∴DE⊥平面EBC;
          (2)時(shí)平面BDE的法向量為
          n
          =(x,y,z),則
          n
          DE
          =y+z=0
          n
          BE
          =-x-y+z=0
          ,令y=-1,則z=1,x=2.
          n
          =(2,-1,1).
          取平面BCD的法向量
          m
          =(0,0,1)

          cos<
          n
          ,
          m
          =
          n
          m
          |
          n
          | |
          m
          |
          =
          1
          2
          2
          =
          2
          4

          從圖形上看,二面角E-DB-C的平面角為銳角,∴sin<
          n
          m
          =
          14
          4

          ∴tan
          n
          ,
          m
          =
          14
          2
          =
          7

          即二面角E-DB-C的正切值為
          7
          點(diǎn)評(píng):本題考查了通過建立空間直角坐標(biāo)系利用數(shù)量積為0與向量垂直的關(guān)系及線面垂直的判定定理證明線面垂直、利用兩個(gè)平面的法向量的夾角得出二面角的平面角的余弦值、三角函數(shù)的基本關(guān)系式基礎(chǔ)知識(shí)與基本技能方法,屬于難題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖在長(zhǎng)方體ABCD-A1B1C1D1中,三棱錐A1-ABC的面是直角三角形的個(gè)數(shù)為:
          4
          4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,定義八個(gè)頂點(diǎn)都在某圓柱的底面圓周上的長(zhǎng)方體叫做圓柱的內(nèi)接長(zhǎng)方體,圓柱也叫長(zhǎng)方體的外接圓柱.設(shè)長(zhǎng)方體ABCD-A1B1C1D1的長(zhǎng)、寬、高分別為a,b,c(其中a>b>c),那么該長(zhǎng)方體的外接圓柱側(cè)面積的最大值等于(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若一個(gè)n面體中有m個(gè)面是直角三角形,則稱這個(gè)n面體的直度為.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

           

          A.         B.               C.                 D.1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若一個(gè)n面體中有m個(gè)面是直角三角形,則稱這個(gè)n面體的直度為.如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,四面體A1-ABC的直度為(    )

           

          A.            B.              C.              D.1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011年四川省成都市高二3月月考數(shù)學(xué)試卷 題型:填空題

          (文科做)(本題滿分14分)如圖,在長(zhǎng)方體

          ABCDA1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).

          (1)證明:D1EA1D;

          (2)當(dāng)EAB的中點(diǎn)時(shí),求點(diǎn)E到面ACD1的距離;

          (3)AE等于何值時(shí),二面角D1ECD的大小為.                      

           

           

           

          (理科做)(本題滿分14分)

               如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

          CA =,AA1 =,M為側(cè)棱CC1上一點(diǎn),AMBA1

             (Ⅰ)求證:AM⊥平面A1BC;

             (Ⅱ)求二面角BAMC的大小;

             (Ⅲ)求點(diǎn)C到平面ABM的距離.

           

           

           

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案