日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的左右兩焦點分別為F1,F(xiàn)2,P是橢圓C上的一點,且在x軸的上方,H是PF1上一點,若(其中O為坐標(biāo)原點).
          (Ⅰ)求橢圓C離心率e的最大值;
          (Ⅱ)如果離心率e取(Ⅰ)中求得的最大值,已知b2=2,點M(-1,0),設(shè)Q是橢圓C上的一點,過Q、M兩點的直線l交y軸于點N,若,求直線l的方程.
          【答案】分析:(Ⅰ)根據(jù)題意,△F1OH與△F1PF2相似,所以,|PF2|=,|PF1|=2a-,從而可求λ=,于是有,而λ∈[],可求橢圓C離心率e的最大值.
          (Ⅱ)由(Ⅰ)知道橢圓C離心率e的最大值是,橢圓C的方程為,直線l的其方程為y=k(x+1),N(0,k)設(shè)Q(x1,y1),由可得(x1,y1-k)=2(-1-x1,-y1),求得x1,y1,代入橢圓方程可求得k.
          解答:解:(Ⅰ)由題意知PF2⊥F1F2,OH⊥PF1
          則有△F1OH與△F1PF2相似,所以…(2分)
          設(shè)F1(-c,0),F(xiàn)2(c,0),c>0,P(c,y1),則有,解得
          所以根據(jù)橢圓的定義得:…(4分)
          ,即,所以…(6分)
          顯然上是單調(diào)減函數(shù),當(dāng)時,e2取最大值
          所以橢圓C離心率e的最大值是…(8分)
          (Ⅱ)由(Ⅰ)知,解得a2=4,
          ∴橢圓C的方程為…(10分)
          由題意知直線l的斜率存在,故設(shè)其斜率為k,則其方程為y=k(x+1),N(0,k)
          設(shè)Q(x1,y1),由于,所以有(x1,y1-k)=2(-1-x1,-y1
          …(12分)
          又Q是橢圓C上的一點,則,解得k=±4,
          所以直線l的方程為4x-y+4=0或4x+y+4=0…(14分)
          點評:本題考查直線與圓錐曲線的綜合問題,著重考查橢圓的性質(zhì),難點在于(Ⅰ)中離心率e與λ關(guān)系的分析整理,突出轉(zhuǎn)化思想與方程思想的運用,綜合性強,屬于難題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2015屆江蘇揚州中學(xué)高二上學(xué)期12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

          已知橢圓的左右兩焦點分別為,是橢圓上一點,且在軸上方,

          (1)求橢圓的離心率的取值范圍;

          (2)當(dāng)取最大值時,過的圓的截軸的線段長為6,求橢圓的方程;

          (3)在(2)的條件下,過橢圓右準(zhǔn)線上任一點引圓的兩條切線,切點分別為.試探究直線是否過定點?若過定點,請求出該定點;否則,請說明理由.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓數(shù)學(xué)公式的左右兩焦點分別為F1,F(xiàn)2,P是橢圓C上的一點,且在x軸的上方,H是PF1上一點,若數(shù)學(xué)公式,數(shù)學(xué)公式(其中O為坐標(biāo)原點).求橢圓C離心率e的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:江蘇模擬題 題型:解答題

          已知橢圓的左右兩焦點為F1,F(xiàn)2,P是橢圓上一點,且在x軸上方,PF2⊥F1F2,OH⊥PF1于H,OH=λOF1,λ∈[]。
          (1)求橢圓的離心率e的取值范圍;
          (2)當(dāng)e取最大值時,過F1,F(xiàn)2,P的圓Q的截y軸的線段長為6,求圓Q的方程;
          (3)在(2)的條件下,過橢圓右準(zhǔn)線L上任一點A引圓Q的兩條切線,切點分別為M,N,試探究直線MN是否過定點?若過定點,請求出該定點;否則,請說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省蘇州中學(xué)高三數(shù)學(xué)能力基礎(chǔ)訓(xùn)練試卷2(解析版) 題型:解答題

          已知橢圓的左右兩焦點分別為F1,F(xiàn)2,P是橢圓C上的一點,且在x軸的上方,H是PF1上一點,若(其中O為坐標(biāo)原點).求橢圓C離心率e的最大值.

          查看答案和解析>>