日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)f(x)=
          lg x,x>0
          x+
          a
          0
          3t2dt,x≤0
          ,若f(f(1))=1,則a=
           
          分析:先根據(jù)分段函數(shù)求出f(1)的值,然后將0代入x≤0的解析式,最后根據(jù)定積分的定義建立等式關(guān)系,解之即可.
          解答:解:∵f(x)=
          lg x,x>0
          x+
          a
          0
          3t2dt,x≤0

          ∴f(1)=0,則f(f(1))=f(0)=1
          即∫0a3t2dt=1=t3|0a=a3
          解得:a=1
          故答案為:1
          點(diǎn)評:本題主要考查了分段函數(shù)的應(yīng)用,以及定積分的求解,同時考查了計算能力,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)=lg(
          2
          1-x
          +a)是奇函數(shù),則使f(x)>0的x的取值范圍是( 。
          A、(-1,0)
          B、(0,1)
          C、(-∞,0)
          D、(0,+∞)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)f(x)=lg[
          1+2x+4xa3
          ]
          ,其中a∈R,如果當(dāng)x∈(-∞,1)時,f(x)有意義,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•嘉定區(qū)三模)已知函數(shù)f(x)=lg(1+
          1x
          ),點(diǎn)An(n,0)(n∈N*),過點(diǎn)An作直線x=n交f(x)的圖象于點(diǎn)Bn,設(shè)O為坐標(biāo)原點(diǎn).記θn=∠Bn+1AnAn+1(n∈N*),化簡求和式Sn=tanθ1+tanθ2+…+tanθn=
          lg(n+2)-lg2
          lg(n+2)-lg2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:陜西 題型:填空題

          設(shè)f(x)=
          lg x,x>0
          x+
          a0
          3t2dt,x≤0
          若f(f(1))=1,則a=______.

          查看答案和解析>>

          同步練習(xí)冊答案