【題目】如圖,在邊長為
的菱形
中,
,現(xiàn)沿對角線
把
翻折到
的位置得到四面體
,如圖
所示.已知
.
(1)求證:平面平面
;
(2)若是線段
上的點,且
,求二面角
的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點
,連接
、
,推導(dǎo)出
、
,利用線面垂直的判定定理得出
平面
,再利用面面垂直的判定定理可證得平面
平面
;
(2)推導(dǎo)出、
、
兩兩垂直,以
為坐標(biāo)原點,
、
、
所在直線分別為
軸、
軸、
軸建立空間直角坐標(biāo)系
,計算出向量
的坐標(biāo),利用空間向量法可求得二面角
的余弦值.
(1)在三棱錐中,取
的中點
,連接
、
,得到
,
四邊形
是菱形,
,
,
又,
,
,
,
又,
,
,
又,
,
、
平面
,
平面
,
又平面
,
平面
平面
;
(2),
為
中點,
,
、
、
兩兩垂直,
以為坐標(biāo)原點,
、
、
所在直線分別為
軸、
軸、
軸建立如圖所示的空間直角坐標(biāo)系
,
則、
、
、
,
,
,
設(shè)平面的法向量
,
由,即
,解得
,取
,則
,
易知平面的一個法向量為
,
.
由圖可知二面角為銳角,所以,二面角
的余弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)常數(shù),函數(shù)
.
(1)令時,求
的最小值,并比較
的最小值與零的大。
(2)求證:在
上是增函數(shù);
(3)求證:當(dāng)時,恒有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,G是線段AD延長線一點,,
平面ABCD,
,
,F是線段PG的中點;
求證:
平面PAC;
若
時,求平面PCF與平面PAG所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】1642年,帕斯卡發(fā)明了一種可以進(jìn)行十進(jìn)制加減法的機(jī)械計算機(jī)年,萊布尼茨改進(jìn)了帕斯卡的計算機(jī),但萊布尼茲認(rèn)為十進(jìn)制的運算在計算機(jī)上實現(xiàn)起來過于復(fù)雜,隨即提出了“二進(jìn)制”數(shù)的概念
之后,人們對進(jìn)位制的效率問題進(jìn)行了深入的研究
研究方法如下:對于正整數(shù)
,
,我們準(zhǔn)備
張不同的卡片,其中寫有數(shù)字0,1,…,
的卡片各有
張
如果用這些卡片表示
位
進(jìn)制數(shù),通過不同的卡片組合,這些卡片可以表示
個不同的整數(shù)
例如
,
時,我們可以表示出
共
個不同的整數(shù)
假設(shè)卡片的總數(shù)
為一個定值,那么
進(jìn)制的效率最高則意味著
張卡片所表示的不同整數(shù)的個數(shù)
最大
根據(jù)上述研究方法,幾進(jìn)制的效率最高?
A. 二進(jìn)制 B. 三進(jìn)制 C. 十進(jìn)制 D. 十六進(jìn)制
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最大值為
,其圖像相鄰的兩條對稱軸之間的距離為
,且
的圖像關(guān)于點
對稱,則下列結(jié)論正確的是( ).
A.函數(shù)的圖像關(guān)于直線
對稱
B.當(dāng)時,函數(shù)
的最小值為
C.若,則
的值為
D.要得到函數(shù)的圖像,只需要將
的圖像向右平移
個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】田忌賽馬是史記
中記載的一個故事,說的是齊國將軍田忌經(jīng)常與齊國眾公子賽馬,孫臏發(fā)也們的馬腳力都差不多,都分為上、中、下三等
于是孫臏給田忌將軍制定了一個必勝策略:比賽即將開始時,他讓田忌用下等馬對戰(zhàn)公子們的上等馬,用上等馬對戰(zhàn)公子們的中等馬,用中等馬對戰(zhàn)公子們的下等馬,從而使田忌贏得公子們許多賭注
假設(shè)田忌的各等級馬與某公子的各等級馬進(jìn)行一場比賽獲勝的概率如表所示:
田忌的馬 | 上等馬 | 中等馬 | 下等馬 |
上等馬 | 1 | ||
中等馬 | |||
下等馬 | 0 |
比賽規(guī)則規(guī)定:一次比由三場賽馬組成,每場由公子和田忌各出一匹馬出騫,結(jié)果只有勝和負(fù)兩種,并且毎一方三場賽馬的馬的等級各不相同,三場比賽中至少獲勝兩場的一方為最終勝利者.
如果按孫臏的策略比賽一次,求田忌獲勝的概率;
如果比賽約定,只能同等級馬對戰(zhàn),每次比賽賭注1000金,即勝利者贏得對方1000金,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在
上是增函數(shù).
求實數(shù)
的值;
若函數(shù)
有三個零點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人各有三張卡片,甲的卡片分別標(biāo)有數(shù)字1、2、3,乙的卡片分別標(biāo)有數(shù)字0、1、3.兩人各自隨機(jī)抽出一張,甲抽出的卡片上的數(shù)字記為,乙抽出的卡片上的數(shù)字記為
,則
與
的積為奇數(shù)的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖放置的邊長為1的正方形沿
軸滾動,點
恰好經(jīng)過原點.設(shè)頂點
的軌跡方程是
,則對函數(shù)
有下列判斷:①函數(shù)
是偶函數(shù);②對任意的
,都有
;③函數(shù)
在區(qū)間
上單調(diào)遞減;④函數(shù)
的值域是
;⑤
.其中判斷正確的序號是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com