日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=.DO⊥AB于O點,OA=OB,DO=2,曲線E過C點,動點P在E上運動,且保持|PA|+|PB|的值不變.
          (1)建立適當?shù)淖鴺讼,求曲線E的方程;
          (2)過D點的直線L與曲線E相交于不同的兩點M、N且M在D、N之間,設(shè)=λ,試確定實數(shù)λ的取值范圍.

          【答案】分析:(1)建立平面直角坐標系,如圖所示∵|PA|+|PB|=|CA|+|CB|=+,可得動點P的軌跡是橢圓,由此易得橢圓的方程;

          (2)設(shè)直線L的方程為y=kx+2,代入曲線E的方程x2+2y2=2,得(2k2+1)x2+8kx+6=0設(shè)M(x1,y1),N(x2,y2),則,再由過D點的直線L可能是Y軸也可能斜率存在分為兩類,由=λ對實數(shù)λ的取值范圍進行討論即可得到所求的答案
          解答:解:(1)建立平面直角坐標系,如圖所示∵|PA|+|PB|=|CA|+|CB|=+
          ∴動點P的軌跡是橢圓
          ∴a=,b=1,c=1
          ∴曲線E的方程是 
          (2)設(shè)直線L的方程為y=kx+2,代入曲線E的方程x2+2y2=2,得(2k2+1)x2+8kx+6=0
          設(shè)M(x1,y1),N(x2,y2),則

          i)  L與y軸重合時,=λ=
          ii)  L與y軸不重合時,由①得   
           又∵λ==,
          ∵x2<x1x1>0
          ∴0<λ<1,



          ∴6<<8
          ∴4<
          ∴4<,即,
          解得λ的取值范圍是[,1).
          點評:本題考查直線與圓錐曲線的綜合題,考查了根與系數(shù)的關(guān)系橢圓的性質(zhì)等,解題的關(guān)鍵是認真審題準確轉(zhuǎn)化題設(shè)中的關(guān)系,本題綜合性強,符號計算運算量大,解題時要認真嚴謹避免馬虎出錯.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,D為BC上一點,∠DAC=30°,BD=2,AB=2
          3
          ,則AC的長為(  )
          A、2
          2
          B、3
          C、
          3
          D、
          3
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于點E.
          (1)求證:點E是邊BC的中點;
          (2)若EC=3,BD=2
          6
          ,求⊙O的直徑AC的長度.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于點P.
          (1)若AE=CD,點M為BC的中點,求證:直線MP∥平面EAB
          (2)若AE=2,CD=1,求銳二面角E-BC-A的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          8.如圖,在Rt△ABC中,∠CAB=90°,AB=2,AC=
          2
          2
          .DO⊥AB于O點,OA=OB,DO=2,曲線E過C點,動點P在E上運動,且保持|PA|+|PB|的值不變.
          (1)建立適當?shù)淖鴺讼,求曲線E的方程;
          (2)過D點的直線L與曲線E相交于不同的兩點M、N且M在D、N之間,設(shè)
          DM
          DN
          =λ,試確定實數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在Rt△ABC中,AC=1,BC=x,D是斜邊AB的中點,將△BCD沿直線CD翻折,若在翻折過程中存在某個位置,使得CB⊥AD,則x的取值范圍是( 。
          A、(0,
          3
          ]
          B、(
          2
          2
          ,2]
          C、(
          3
          ,2
          3
          ]
          D、(2,4]

          查看答案和解析>>

          同步練習冊答案