【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校300名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘).
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 34 | 51 | 59 | 66 | 65 | 25 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 40 | 160 | |
合計(jì) |
(2)通過(guò)計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
參考公式:,其中
.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線L:,曲線C的參數(shù)方程為
(
為參數(shù))
求直線L和曲線C的普通方程;
在曲線C上求一點(diǎn)Q,使得Q到直線L的距離最小,并求出這個(gè)最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓經(jīng)過(guò)兩點(diǎn)
,
,且圓心
在直線
:
上.
(1)求圓的方程;
(2)設(shè)圓與
軸相交于
、
兩點(diǎn),點(diǎn)
為圓
上不同于
、
的任意一點(diǎn),直線
、
交
軸于
、
點(diǎn).當(dāng)點(diǎn)
變化時(shí),以
為直徑的圓
是否經(jīng)過(guò)圓
內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)實(shí)施“光盤(pán)行動(dòng)”以后,某自助啤酒吧也制定了自己的行動(dòng)計(jì)劃,進(jìn)店的每一位客人需預(yù)交元,啤酒根據(jù)需要自己用量杯量取,結(jié)賬時(shí),根據(jù)每桌剩余酒量,按一定倍率收費(fèi)(如下表),每桌剩余酒量不足
升的,按
升計(jì)算(如剩余
升,記為剩余
升).例如:結(jié)賬時(shí),某桌剩余酒量恰好為
升,則該桌的每位客人還應(yīng)付
元.統(tǒng)計(jì)表明飲酒量與人數(shù)有很強(qiáng)的線性相關(guān)關(guān)系,下面是隨機(jī)采集的
組數(shù)據(jù)
(其中
表示飲酒人數(shù),
(升)表示飲酒量):
,
,
,
,
.
剩余酒量(單位:升) |
| ||||
結(jié)賬時(shí)的倍率 |
(1)求由這組數(shù)據(jù)得到的
關(guān)于
的回歸直線方程;
(2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了
升啤酒,這時(shí),酒吧服務(wù)生對(duì)小王說(shuō),根據(jù)他的經(jīng)驗(yàn),小王和朋友量取的啤酒可能喝不完,可以考慮再邀請(qǐng)
位或
位朋友一起來(lái)飲酒,會(huì)更劃算.試向小王是否該接受服務(wù)生的建議?
參考數(shù)據(jù):回歸直線的方程是,其中
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二面角中,
,射線
,
分別在平面
,
內(nèi),點(diǎn)A在平面
內(nèi)的射影恰好是點(diǎn)B,設(shè)二面角
、
與平面
所成角、
與平面
所成角的大小分別為
,則( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>
的奇函數(shù),且當(dāng)
時(shí),
,其中
是常數(shù).
(1)求的解析式;
(2)求實(shí)數(shù)的值,使得函數(shù)
,
的最小值為
;
(3)已知函數(shù)滿足:對(duì)任何不小于
的實(shí)數(shù)
,都有
,其中
為不小于
的正整數(shù)常數(shù),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓與定點(diǎn)
,動(dòng)圓
過(guò)
點(diǎn)且與圓
相切.
(1)求動(dòng)圓圓心的軌跡
的方程;
(2)若過(guò)定點(diǎn)的直線
交軌跡
于不同的兩點(diǎn)
、
,求弦長(zhǎng)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在
上是單調(diào)遞增函數(shù),求實(shí)數(shù)
的取值范圍;
(Ⅱ)若,對(duì)任意
,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
,
,
,且
,
.
(1)證明:面
;
(2)在上是否存在點(diǎn)
,使
平面
,若存在,請(qǐng)計(jì)算
的值,若不存在,請(qǐng)說(shuō)明理由;
(3)若,求點(diǎn)
到平面
的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com