日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】選修4-4:坐標(biāo)系與參數(shù)方程
          在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為 (t為參數(shù), ),以坐標(biāo)原點o為極點,x軸的正半軸為極軸,并取相同的長度單位,建立極坐標(biāo)系.曲線
          (1)若直線l曲線 相交于點 , , ,證明: 為定值;
          (2)將曲線 上的任意點 作伸縮變換 后,得到曲線 上的點 ,求曲線 的內(nèi)接矩形 周長的最大值.

          【答案】
          (1)解:曲線

          ,


          (2)解:伸縮變換后得 .其參數(shù)方程為: .

          不妨設(shè)點 在第一象限,由對稱性知:周長為

          ,( 時取等號)周長最大為8


          【解析】(1)由已知把直線的參數(shù)方程代入到圓的方程得到關(guān)于t的一元二次方程,借助韋達(dá)定理求出關(guān)系代入要求的式子即可得到結(jié)果。(2)根據(jù)伸縮變換轉(zhuǎn)化可得出圓的標(biāo)準(zhǔn)方程,再轉(zhuǎn)化為極坐標(biāo)方程因為 A ( m , n ) 在第一象限由對稱性可知周長為 4 ( m + n ) = 4 ( cos θ + sin θ ),整理成同名的三角函數(shù)式借助正弦函數(shù)的最值情況求出周長的最大值。

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,半圓的直徑為, 為直徑延長線上的一點, , 為半圓上任意一點,以為一邊作等邊三角形,設(shè) .

          (1)當(dāng)為何值時,四邊形面積最大,最大值為多少;

          (2)當(dāng)為何值時, 長最大,最大值為多少.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某加油站20名員工日銷售量的頻率分布直方圖,如圖所示:

          1)補全該頻率分布直方圖在[20,30)的部分,并分別計算日銷售量在 [10,20),[2030)的員工數(shù);

          2)在日銷量為[10,30)的員工中隨機抽取2人,求這兩名員工日銷量在 [20,30)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為x2y28x150,若直線ykx2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是____________

          【答案】

          【解析】C的方程可化為(x4)2y21,C的圓心為(4,0),半徑為1.由題意知,直線ykx2上至少存在一點A(x0,kx02),以該點為圓心,1為半徑的圓與圓C有公共點,存在x0∈R,使得AC≤11成立,即ACmin≤2.

          ACmin即為點C到直線ykx2的距離,

          ≤2,解得0≤k≤.k的最大值是.

          型】填空
          結(jié)束】
          15

          【題目】在平面直角坐標(biāo)系中,直線

          (1)若直線與直線平行,求實數(shù)的值;

          (2)若, ,點在直線上,已知的中點在軸上,求點的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校舉辦校園科技文化藝術(shù)節(jié),在同一時間安排《生活趣味數(shù)學(xué)》和《校園舞蹈賞析》兩場講座.已知A、B兩學(xué)習(xí)小組各有5位同學(xué),每位同學(xué)在兩場講座任意選聽一場.若A組1人選聽《生活趣味數(shù)學(xué)》,其余4人選聽《校園舞蹈賞析》;B組2人選聽《生活趣味數(shù)學(xué)》,其余3人選聽《校園舞蹈賞析》.
          (1)若從此10人中任意選出3人,求選出的3人中恰有2人選聽《校園舞蹈賞析》的概率;
          (2)若從A、B兩組中各任選2人,設(shè)X為選出的4人中選聽《生活趣味數(shù)學(xué)》的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知向量m (sin ,1), =(1, cos ),函數(shù)f(x)=
          (1)求函數(shù)f(x)的最小正周期;
          (2)若f(α﹣ )= ,求f(2α+ )的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)
          (I)求函數(shù) 在點 處的切線方程;
          (II)求函數(shù) 的極值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】研究函數(shù)fx)= 的性質(zhì),完成下面兩個問題:
          ①將f(2),f(3),f(5)按從小到大排列為;
          ②函數(shù)gx)= x> 0)的最大值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某化工廠擬建一個下部為圓柱,上部為半球的容器(如圖圓柱高為 ,半徑為 ,不計厚度,單位:米),按計劃容積為 立方米,且 ,假設(shè)建造費用僅與表面積有關(guān)(圓柱底部不計 ),已知圓柱部分每平方米的費用為2千元,半球部分每平方米的費用為2千元,設(shè)該容器的建造費用為y千元.

          (1)求y關(guān)于r的函數(shù)關(guān)系,并求其定義域;
          (2)求建造費用最小時的 .

          查看答案和解析>>

          同步練習(xí)冊答案