日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,某污水處理廠要在個(gè)矩形ABCD的池底水平鋪設(shè)污水凈化管道(,E是直角頂點(diǎn))來(lái)處理污水,管道越長(zhǎng),污水凈化效果越好,設(shè)計(jì)要求管道的接口EAB的中點(diǎn),F、G分別落在AD、BC上,且,,設(shè).

          1)試將污水管道的長(zhǎng)度l表示成的函數(shù),并寫(xiě)出定義域;

          2)當(dāng)為何值時(shí),污水凈化效果最好,并求此時(shí)管道的長(zhǎng)度.

          【答案】1,定義域.2時(shí),污水凈化效果最好,此時(shí)管道的長(zhǎng)度為

          【解析】

          1)根據(jù)題意分別表示出,,即可得解;

          2)結(jié)合(1)化簡(jiǎn)可得,,利用換元法,令,根據(jù)函數(shù)性質(zhì)即可求解.

          1)由題意,,則,∵E的中點(diǎn),,

          ,∴,則,定義域.

          2)由(1)可知,,

          化簡(jiǎn)可得,

          .

          ,∴,

          可得,則,

          可得:,且,那么.

          當(dāng)時(shí),取得最大值為,

          此時(shí),即,∴,

          時(shí),污水凈化效果最好,此時(shí)管道的長(zhǎng)度為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱柱ABC-A1B1C1中,已知AA1⊥底面ABC,AC⊥BC,四邊形BB1C1C為正方形,設(shè)AB1的中點(diǎn)為D,B1C∩BC1=E.

          求證:(1)DE∥平面AA1C1C;

          (2)BC1⊥平面AB1C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】小明在石家莊市某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒(méi)有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元.

          (1)請(qǐng)分別求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

          (2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)與天數(shù)滿(mǎn)足以下表格:

          日均派送單數(shù)

          52

          54

          56

          58

          60

          頻數(shù)(天)

          20

          30

          20

          20

          10

          回答下列問(wèn)題:

          ①根據(jù)以上數(shù)據(jù),設(shè)每名派送員的日薪為(單位:元),試分別求出這100天中甲、乙兩種方案的日薪平均數(shù)及方差;

          ②結(jié)合①中的數(shù)據(jù),根據(jù)統(tǒng)計(jì)學(xué)的思想,幫助小明分析,他選擇哪種薪酬方案比較合適,并說(shuō)明你的理由.

          (參考數(shù)據(jù): , , , , , ,

          【答案】(1);(2)見(jiàn)解析

          【解析】試題分析:1甲方案:底薪100元,每派送一單獎(jiǎng)勵(lì)1元;乙方案:底薪140元,每日前55單沒(méi)有獎(jiǎng)勵(lì),超過(guò)55單的部分每單獎(jiǎng)勵(lì)12元. 求出甲、乙兩種薪酬方案中日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式;

          ①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,由此可求出這100天中甲方案的日薪平均數(shù)及方差:同理可求出這100天中乙兩種方案的日薪平均數(shù)及方差,

          ②不同的角度可以有不同的答案

          試題解析:((1)甲方案中派送員日薪(單位:元)與送貨單數(shù)的函數(shù)關(guān)系式為:

          乙方案中派送員日薪(單位:元)與送單數(shù)的函數(shù)關(guān)系式為:

          ,

          (2)①、由表格可知,甲方案中,日薪為152元的有20天,日薪為154元的有30天,日薪為156元的有20天,日薪為158元的有20天,日薪為160元的有10天,則

          ,

          乙方案中,日薪為140元的有50天,日薪為152元的有20天,日薪為176元的有20天,日薪為200元的有10天,則

          ,

          ②、答案一:

          由以上的計(jì)算可知,雖然,但兩者相差不大,且遠(yuǎn)小于,即甲方案日薪收入波動(dòng)相對(duì)較小,所以小明應(yīng)選擇甲方案.

          答案二:

          由以上的計(jì)算結(jié)果可以看出, ,即甲方案日薪平均數(shù)小于乙方案日薪平均數(shù),所以小明應(yīng)選擇乙方案.

          型】解答
          結(jié)束】
          20

          【題目】已知橢圓 的左、右焦點(diǎn)分別為, ,且離心率為 為橢圓上任意一點(diǎn),當(dāng)時(shí), 的面積為1.

          (1)求橢圓的方程;

          (2)已知點(diǎn)是橢圓上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線 分別與橢圓交于點(diǎn), ,設(shè)直線的斜率為,直線的斜率為,求證: 為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4—4:極坐標(biāo)與參數(shù)方程

          在平面直角坐標(biāo)系中,將曲線 (為參數(shù)) 上任意一點(diǎn)經(jīng)過(guò)伸縮變換后得到曲線的圖形.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線

          Ⅰ)求曲線和直線的普通方程;

          Ⅱ)點(diǎn)P為曲線上的任意一點(diǎn),求點(diǎn)P到直線的距離的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)fx)=logax+1),gx)=2loga2x+t)(tR),其中x[015],a0,且a1

          1)若1是關(guān)于x的方程fx)﹣gx)=0的一個(gè)解,求t的值;

          2)當(dāng)0a1時(shí),不等式fx)≥gx)恒成立,求t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某投資人欲將5百萬(wàn)元資金投人甲、乙兩種理財(cái)產(chǎn)品,根據(jù)銀行預(yù)測(cè),甲、乙兩種理財(cái)產(chǎn)品的收益與投入資金的關(guān)系式分別為,其中為常數(shù)且.設(shè)對(duì)乙種產(chǎn)品投入資金百萬(wàn)元.

          (Ⅰ)當(dāng)時(shí),如何進(jìn)行投資才能使得總收益最大;(總收益

          (Ⅱ)銀行為了吸儲(chǔ),考慮到投資人的收益,無(wú)論投資人資金如何分配,要使得總收益不低于0.45百萬(wàn)元,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)在正方體的面對(duì)角線上運(yùn)動(dòng),則下列四個(gè)命題:

          ;

          ;

          ③平面平面

          ④三棱錐的體積不變.

          其中正確的命題序號(hào)是______

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下面幾種推理是合情推理的是(  )

          ①由圓的性質(zhì)類(lèi)比出球的有關(guān)性質(zhì);②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是 歸納出所有三角形的內(nèi)角和都是;③由,滿(mǎn)足,,推出是奇函數(shù);④三角形內(nèi)角和是,四邊形內(nèi)角和是,五邊形內(nèi)角和是,由此得凸多邊形內(nèi)角和是.

          A. ①②B. ①③④C. ①②④D. ②④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】給出下列命題:

          (1)函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱(chēng);

          (2)函數(shù)在區(qū)間內(nèi)是增函數(shù);

          (3)函數(shù)是偶函數(shù);

          (4)存在實(shí)數(shù),使;

          (5)如果函數(shù)的圖象關(guān)于點(diǎn)中心對(duì)稱(chēng),那么的最小值為.

          其中正確的命題的序號(hào)是___________.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案